Math, asked by kumariabha2341, 2 months ago

plz give the solution​

Attachments:

Answers

Answered by suhaibrock99
0

(2)n + (2/2)n / (2.2)n - (2)n =

(2)n/(2)n ×{1+(1/2)/( 2-1)} = 3/2

Answered by brainlyhero98
1

Step-by-step explanation:

 i) \:  \: \frac{ {2}^{n} +  {2}^{n - 1}  }{ {2}^{n + 1}  -  {2}^{n}  }  =  \frac{ {2}^{n}  +  \frac{ {2}^{n} }{2} }{( {2}^{n}.2 ) -  {2}^{n} }   \\ \\  =  \frac{ \frac{2.{2}^{n}  +  {2}^{n} }{2}  }{ {2}^{n} } \\   \\  =  \frac{ \frac{3 .\cancel{ {2}^{n}} }{2} }{  \cancel{{2}^{n}} }  \\ \\   =  \frac{3}{2}  \\ hence \: it \: is \: proved

 ii)\:\:\frac{ {6}^{n + 3}  -  32. {6}^{n + 1}  }{ {6}^{n + 2}   -  2. {6}^{n + 1} }  =  \frac{ {6}^{n} . {6}^{3} - 32 . {6}^{n} .6 }{ {6}^{n}. {6}^{2} - 2. {6}^{n}  .6 }  \\   \\  =  \frac{ \cancel {{6}^{n}}( {6}^{3}  - 32 \times 6) }{ \cancel{ {6}^{n} }( {6}^{2}  - 2 \times 6)}    \\  \\   = \frac{216 - 192}{36 - 12}   \\ \\  =  \frac{24}{24}   \\ \\  = 1 \\ hence \: it \: is \: proved.

Similar questions