plz give to answer to attached photo
Attachments:
Answers
Answered by
0
Answer:
Cosθ - Sinθ = √2 Sinθ if Cosθ + Sinθ = √2 Cosθ
Step-by-step explanation:
Cosθ + Sinθ = √2 Cosθ
Squaring both sides
=> Cos²θ + Sin²θ + 2CosθSinθ = 2Cos²θ
=> 2CosθSinθ = Cos²θ - Sin²θ
Cos² + Sin²θ = 1
Subtracting 2CosθSinθ from both sides
=> Cos² + Sin²θ - 2CosθSinθ = 1 - 2CosθSinθ
=> (Cosθ - Sinθ)² = 1 - 2CosθSinθ
using 2CosθSinθ = Cos²θ - Sin²θ
=> (Cosθ - Sinθ)² = 1 - (Cos²θ - Sin²θ)
=> (Cosθ - Sinθ)² = 1 - Cos²θ + Sin²θ
=> (Cosθ - Sinθ)² = Sin²θ + Sin²θ
=> (Cosθ - Sinθ)² = 2Sin²θ
=> Cosθ - Sinθ = √2 Sinθ
Similar questions