Math, asked by kmaninder001, 3 months ago

plz give written solution of this question..will mark brainliest...plz give fast​

Attachments:

Answers

Answered by Anonymous
74

\sf \dfrac{ {x}^{ - 1} }{ {x}^{ - 1}  \:  \: +  \:  \:  {y}^{ - 1}  }  +  \dfrac{ {x}^{ - 1} }{ {x}^{ - 1}   \:  \: -    \:  \: {y}^{ - 1}  }  =  \dfrac{2y^{2} }{ {y}^{2} -  {x}^{2}  }

\sf \dfrac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{y}} + \dfrac{\frac{1}{x}}{\frac{1}{x} - \frac{1}{y}} =\dfrac{2y^{2} }{ {y}^{2} -  {x}^{2}}

\sf \dfrac{( \frac{1}{x} - \frac{1}{y} ) \frac{1}{x} + ( \frac{1}{x} + \frac{1}{y} ) \frac{1}{x}}{(\frac{1}{x} + \frac{1}{y}) (\frac{1}{x} - \frac{1}{y})} = \dfrac{2y^{2} }{ {y}^{2} -  {x}^{2}}

\sf \dfrac{\frac{1}{x^2} - \cancel{\frac{1}{yx}} +  \frac{1}{x^2} + \cancel{\frac{1}{yx}}}{(\frac{1}{x} + \frac{1}{y}) (\frac{1}{x} - \frac{1}{y})} = \dfrac{2y^{2} }{ {y}^{2} -  {x}^{2}}

\sf \dfrac{\frac{1}{x^2} + \frac{1}{x^2}}{\frac{y^2-x^2}{x^2y^2}} = \dfrac{2y^{2} }{ {y}^{2} -  {x}^{2}}

\sf \dfrac{\frac{2}{x^2}}{\frac{y^2-x^2}{x^2y^2}} = \dfrac{2y^{2} }{ {y}^{2} -  {x}^{2}}

\sf \dfrac{2(x^2y^2)}{(y^2-x^2)x^2} = \dfrac{2y^{2} }{ {y}^{2} -  {x}^{2}}

\sf \dfrac{\cancel{2}x^2\cancel{y^2}}{x^2\cancel{(y^2-x^2)}} = \dfrac{\cancel{2}\cancel{y^{2}} }{ \cancel{{y}^{2} -  {x}^{2}}}

\sf \dfrac{\cancel x^2}{\cancel x^2} = 1

\sf 1 = 1


Anonymous: Awsm sistah! ❤️
kmaninder001: thanku so mchh
Answered by lovers009
1

Answer

Step-By-Step-Explanation

Similar questions