Math, asked by GourammaBiradar, 14 hours ago

plz guys
answer it by
step by step
k
plz answer it step by step ​

Attachments:

Answers

Answered by Itzheartcracer
6

Given :-

If Q(0,1) is equidistant from P(5,-3) and R(x,6)

To Find :-

Value of x

PR and QR

Solution :-

As

Q = Equidistant

QP = QR

For QP

\sf QP=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

\sf QP=\sqrt{(5-0)^2+(-3-1)^2}

\sf QP = \sqrt{5^2+(-4)^2}

\sf QP=\sqrt{25+16}

\sf QP=\sqrt{41}

For QR

\sf QR=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

\sf QR = \sqrt{(x-0)^2+(6-1)^2}

\sf QR=\sqrt{x^2+5^2}

\sf QR=\sqrt{x^2+25}

As QP = QR

\sf \sqrt{41}=\sqrt{x^2+25}

On squaring both the sides

\sf(\sqrt{41})^2 =(\sqrt{x^2+25})^2

\sf 41=x^2+25

\sf 41-25=x^2

\sf 16=x^2

\sf\sqrt{16}=x

\sf\pm 4=x

For QR

QP = QR

QP = QR = √41

For PR

\sf PR=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

\sf PR=\sqrt{(x-5)^2+[6-(-3)]^2}

\sf PR=\sqrt{x^2-10x+25+(6+3)^2}

\sf PR=\sqrt{x^2-10x+25+(9)^2}

\sf PR=\sqrt{x^2-10x+106}

If x = 4

\sf PR=\sqrt{(4)^2-10(4)+106}

\sf PR=\sqrt{16-40+106}

\sf PR=\sqrt{122-40}

\sf PR=\sqrt{82}

If x = -4

\sf PR=\sqrt{(-4)^2-10(-4)+106}

\sf PR=\sqrt{16+40+106}

\sf PR=\sqrt{162}

\sf PR=9\sqrt{2}

Answered by sumellikaagnisha
1

As given Q(0, 1) is equidistant from P (5,-3) and R(x, 6)

⇒ P Q = QR

→ √(0-5)² + (1 − (−3))²

=√(x −0)² + (16)² [By using disatnce

formula = \sqrt{(x2-x₁)² + (y2 − ₁)² ]}

⇒ 25 + 16 = x² + 25

⇒ 41 = x² + 25

⇒ x² = 16

⇒x=4

Distance between Q(0, 1) and R(4, 6)

QR = √(40)² + (6 − 1)² = √√4² +5²: √16 +25 = √41

Distance between P (5, -3) and R(4, 6)

PR= √(4 − 5)² + (6 + 3)² = √1 +81

= √82

hope it helps you

please mark me as brainliest

Similar questions