Math, asked by kriti7753, 10 months ago

Plz guys answer me right now because it's very urgent. ​

Attachments:

Answers

Answered by Mysterioushine
7

\huge\rm\underline\purple{SOLUTION}

 {5}^{4x}   \times  {5}^{ - 2x} = 125 \times  {5}^{x}  \\  \\  =  > 5 {}^{4x}  \times  \frac{1}{5 {}^{2x} }  =  {5}^{3}  \times  {5}^{x}  \\  \\  =  >  {5}^{4x - 2x}  =  {5}^{3 + x}  \\  \\  =  >  {5}^{2x}  =  {5}^{3 + x}  \\  \\ as \: bases \: are \: equal \: powers \:  can \: be \: equated \\  \\  =  > 2x = 3 + x \\  \\ =  > x = 3

\large\rm\bold{\boxed{a^m\times\: a^n\:=\:a^(m+n)}}

\large\rm\bold{\boxed{\frac{a^m}{a^n}\:=\:a^(m-n)}}

\large\rm\bold{\boxed{a^(-n)\:=\:\frac{1}{a^n}}}

Similar questions