Math, asked by neha1594, 5 months ago

plz help................ ​

Attachments:

Answers

Answered by BrainlyEmpire
155

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T_{1}:T_{2}=1:4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies Length( l_{1}) = 1 \: m \\  \\ \tt:\implies Length( l_{2}) = 16\: m \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Comparison \:of \: time \: period =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies  T_{1} = 2\pi \sqrt{ \frac{ l_{1} }{g} }  \\  \\ \tt: \implies  T_{1} =2\pi \sqrt{ \frac{1}{g} }  -  -  -  -  - (1) \\  \\  \bold{Similarly : } \\ \tt: \implies  T_{2} = 2\pi \sqrt{ \frac{ l_{2}}{g} }  \\  \\ \tt: \implies  T_{2} = 2\pi \sqrt{ \frac{16}{g} }  -  -  -  -  - (2) \\  \\  \text{Taking \: ratio  \: of \: (1) \: and \: (2)} \\  \\  \tt:  \implies  \frac{ T_{1} }{ T_{2} }  =  \frac{   2\pi\sqrt{ \frac{1}{g} }   }{ 2\pi \sqrt{ \frac{16}{g} }  }  \\  \\ \tt:  \implies  \frac{ T_{1} }{ T_{2} } =   \sqrt{ \frac{1}{g} }   \times  \sqrt{ \frac{g}{16} }  \\  \\ \tt:  \implies  \frac{ T_{1} }{ T_{2} }  = \sqrt{ \frac{1}{16} }  \\  \\ \tt:  \implies  \frac{ T_{1} }{ T_{2} }  = \frac{1}{4}  \\  \\  \green{\tt:  \implies  { T_{1} } : { T_{2} }  =1 : 4} \\  \\   \green{\tt \therefore Time \: period \: of \:  l_{2} \: is \:4 \: times \: of \: time \: period \: of \:  l_{1}}

Answered by Anonymous
75

Answer:

mass of bullet should be =10gm=0.01kg

initial velocity (U)of bullet=1000m/s

final velocity (V)=0m/s(because it has stopped after striking sand)

displacement of bullet=5cm=0.05m

a) using 2as=V ²-U²

2(a)(0.05)=0²-1000²

2a(5/100)=-1000000

2a(1/20)=-1000000

a(1/10)=-1000000

a=-10000000=-10power7

acceleration of bullet is -10power7or -10000000

by using F=ma

F=0.01(10000000)

F=1/100(10000000)

F=-100000N

there fore resistive force of bullet =-100000N

b) by using a=v-u/t

-10000000=0-1000/t

-10000000=-1000/t

-10000=t

or

t=-10⁴seconds

hope this helps you

Similar questions