Math, asked by linhvacker13, 6 months ago

Plz help fast...............​

Attachments:

Answers

Answered by naraboinavenkataiah2
0

Answer:

6/7

Step-by-step explanation:

3+√2 / 3-√2 = a + b√2

= (3+√2) (3+√2) / (3-√2) (3+√2) = a + b√2

= g+6√2+2 / g-2 = a + b√2

= 11+6√2 = a + b√2

= 11/7 + 6/7√2 = a + b√2

= a = 1/7 g + b√2 = 6/7

Answered by MaIeficent
2

Step-by-step explanation:

Question:-

Find the values of a and b if 3+√2 /3 - √2 = a + b√2

Solution:-

\sf  \dashrightarrow\dfrac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}

\sf By \: rationalizing \: the  \: denominator:-

\sf  \dashrightarrow\dfrac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \dfrac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  = a + b \sqrt{2}

\sf  \dashrightarrow\dfrac{(3 +  \sqrt{2})(3 +  \sqrt{2} ) }{(3 -  \sqrt{2} )(3 +  \sqrt{2}) }  = a + b \sqrt{2}

\sf  \dashrightarrow\dfrac{(3 +  \sqrt{2})^{2}  }{(3) ^{2}   -  (\sqrt{2}) ^{2}  }  = a + b \sqrt{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg[ \because(a + b)(a - b) =  { a}^{2}  -  {b}^{2}  \bigg]

\sf  \dashrightarrow\dfrac{ {3 }^{2} +   (\sqrt{2})^{2}   + 2(3)( \sqrt{2}) }{9 - 2  }  = a + b \sqrt{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg[ \because(a + b)^{2}  =  { a}^{2}   +   {b}^{2}  + 2ab \bigg]

\sf  \dashrightarrow\dfrac{ 9 + 2 + 6 \sqrt{2} }{7}  = a + b \sqrt{2}

\sf  \dashrightarrow\dfrac{ 11 + 6 \sqrt{2} }{7}  = a + b \sqrt{2}

\sf  \dashrightarrow\dfrac{ 11  }{7} +  \dfrac{6 \sqrt{2} }{7}   = a + b \sqrt{2}

\sf Comparing \: \:  \dfrac{ 11  }{7} +  \dfrac{6 \sqrt{2} }{7}     \: \:( with) \:  \:  a + b \sqrt{2}

 \dashrightarrow  \underline{ \boxed{ \sf a = \dfrac{ 11  }{7}  \:  \:  ,\:  \: b =  \dfrac{6}{7}}}

Similar questions