Math, asked by abcd12329, 5 months ago

plz help fast

plz plz plz ​

Attachments:

Answers

Answered by StormEyes
1

\sf \Large Solution!!

\sf \large To\:prove:

\sf \to \dfrac{1}{2+\sqrt{3}}+\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{2-\sqrt{5}}=0

\sf Solving\:LHS!!

Rationalize the denominator.

\sf \dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}}+\dfrac{2}{\sqrt{5}-\sqrt{3}}\times \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{1}{2-\sqrt{5}}\times \dfrac{2+\sqrt{5}}{2+\sqrt{5}}

\sf \to \cancel{2}\cancel{-\sqrt{3}}\cancel{+\sqrt{5}}\cancel{+\sqrt{3}}\cancel{-2}\cancel{-\sqrt{5}}

\sf \to L.H.S=R.H.S

Hence, proved.


abcd12329: thanks for the answer
StormEyes: welcome :D
Answered by walianandini58
1

Step-by-step explanation:

L.H.S.

(✓5-✓3)(2-✓5)+2(2+✓3)(2-✓5)+(2+✓3)(✓5-✓3)/(2+✓3)(✓5-✓3)(2-✓5)

(2✓5-5-2✓3+✓15)+2(4-2✓5+2✓3-✓15)+(2✓5-2✓3+✓15-✓3)/(2+✓3)(✓5-✓3)(2-✓5)

(4✓5-4✓5-4✓3+4✓3+2✓15-2✓15+3-3/(2+✓3)(✓5-✓3)(2-✓5)

0/(2+✓3)(✓5-✓3)(2-✓5)

0

L.H.S.=R.H.S.

Similar questions