Math, asked by kali353, 4 months ago

plz help..................?!?!?!!!??

find volume of cylinder?!

Attachments:

Answers

Answered by BrainlyEmpire
150

\huge{\underline{\underline{\sf{\purple{Required\:Solution:}}}}}

Volume of cylinder B is greater.

For Cylinder A :-

\displaystyle{\sf{\:\:\:\:\:\:\:\:r(radius)\:=\: \dfrac{7}{2}cm}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:h(height)\:=\: 14cm}}

\displaystyle{\boxed{\sf{ Volume\:=\: \pi r^{2}h}}}

Substitute the values and simplify it

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:= \dfrac{22}{7} \times \bigg(\frac{7}{2}^{2} \bigg)\times14}}

\large{\boxed{\sf{\orange{= 539 cm^{3}}}}}

For Cylinder B:-

\displaystyle{\sf{\:\:\:\:\:\:\:\:r(radius)\:=\: \dfrac{14}{2}cm=7cm}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:h(height)\:=\: 7cm}}

\displaystyle{\boxed{\sf{ Volume\:=\: \pi r^{2}h}}}

Substitute the values and simplify it.

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:= \dfrac{22}{7} \times (7^{2})\times7}}

\large{\boxed{\sf{\orange{= 1078 cm^{3}}}}}

By actual calculation of volumes of both the cylinders, it is verified that the volumes of cylinder B is greater.

For Cylinder A

\displaystyle{\boxed{\sf{ \:\:\:Surface\:area\:=\:2 \pi r(r+h)}}}

Substitute the values and simplify it

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times \dfrac{7}{2} \times \bigg( \dfrac{7}{2} + 14\bigg)}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{35}{2}}}

\large{\boxed{\sf{\pink{=\:385\:cm^{2}}}}}.

For Cylinder B

\displaystyle{\boxed{\sf{ \:\:\:Surface\:area\:=\:2 \pi r(r+h)}}}

Substitute the values and simplify it.

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times 7\times (7+7)}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times 7 \times 14}}

\large{\boxed{\sf{\pink{=\:616\:cm^{2}}}}}.

By actual calculation of surface area of both the cylinders, we observed that the cylinder with greater volume has greater surface area.

__________________________

Answered by Anonymous
155

Answer:

solution

Volume of cylinder B is greater.

For Cylinder A :-

\displaystyle{\sf{\:\:\:\:\:\:\:\:r(radius)\:=\: \dfrac{7}{2}cm}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:h(height)\:=\: 14cm}}

\displaystyle{\boxed{\sf{ Volume\:=\: \pi r^{2}h}}}

Substitute the values and simplify it

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:= \dfrac{22}{7} \times \bigg(\frac{7}{2}^{2} \bigg)\times14}}

\large{\boxed{\sf{\pink{= 539 cm^{3}}}}}

For Cylinder B:-

\displaystyle{\sf{\:\:\:\:\:\:\:\:r(radius)\:=\: \dfrac{14}{2}cm=7cm}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:h(height)\:=\: 7cm}}

\displaystyle{\boxed{\sf{ Volume\:=\: \pi r^{2}h}}}

Substitute the values and simplify it.

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:= \dfrac{22}{7} \times (7^{2})\times7}}

\large{\boxed{\sf{\orange{= 1078 cm^{3}}}}}

By actual calculation of volumes of both the cylinders, it is verified that the volumes of cylinder B is greater.

For Cylinder A

\displaystyle{\boxed{\sf{ \:\:\:Surface\:area\:=\:2 \pi r(r+h)}}}

Substitute the values and simplify it

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times \dfrac{7}{2} \times \bigg( \dfrac{7}{2} + 14\bigg)}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{35}{2}}}

\large{\boxed{\sf{\pink{=\:385\:cm^{2}}}}}.

For Cylinder B

\displaystyle{\boxed{\sf{ \:\:\:Surface\:area\:=\:2 \pi r(r+h)}}}

Substitute the values and simplify it.

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times 7\times (7+7)}}

\displaystyle{\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 2 \times \dfrac{22}{7} \times 7 \times 14}}

\large{\boxed{\sf{\blue{=\:616\:cm^{2}}}}}.

By actual calculation of surface area of both the cylinders, we observed that the cylinder with greater volume has greater surface area.

__________________________

Similar questions