Math, asked by neerajtiwari6, 1 year ago

plz help in any way you can​

Attachments:

Answers

Answered by Anonymous
8

Given :-

Cos \theta - Sin\theta = \sqrt{2}Sin\theta

To prove :-

 Cos \theta + Sin \theta = \sqrt{2} Cos \theta

Solution:-

Cos \theta - Sin\theta = \sqrt{2}Sin\theta

 Cos \theta = \sqrt{2}Sin\theta + Sin\theta

 Cos \theta = Sin \theta(  \sqrt{2}+1)

 Cos \theta = Sin\theta \left(\sqrt{2}+1 \times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}\right)

 Cos \theta = Sin\theta \left(\dfrac{2-1}{\sqrt{2}-1}\right)

 Cos \theta = \dfrac{Sin\theta}{\sqrt{2}-1}

 Sin\theta = Cos \theta (\sqrt{2}-1)

  • Put the value of  Cos \theta

 Cos \theta + Sin \theta = \sqrt{2} Cos \theta

 Cos \theta + \sqrt{2}Cos \theta - Cos \theta = \sqrt{2}Cos \theta

 \sqrt{2}Cos \theta = \sqrt{2}Cos \theta

hence,

proved....

Similar questions