Math, asked by anishamohan413, 5 hours ago

plz help me 11th pcbm Math problem (30 point I selected for this question)
plz help me ​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let assume that f(0) = k

So,

Given function can be rewritten as

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{ {\bigg(\dfrac{3x + 2}{2 - 5x} \bigg) }^{\dfrac{1}{x} }  \: when \: x \:  \ne \: 0} \\ \\  &\sf{ \:  \:  \:  \:  \:  \:   \:  \:  \: k \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: when \: x \:  =  \: 0} \end{cases}\end{gathered}\end{gathered}

We know,

A function f(x) is said to be Continuous at x = a, iff

\boxed{ \quad \sf{ \:\displaystyle\lim_{x \to a}  \bf\: f(x) = f(a) \quad}}

Now,

\rm :\longmapsto\:f(0) = k

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}{\bigg(\dfrac{3x + 2}{2 - 5x} \bigg) }^{\dfrac{1}{x} }

If we substitute directly x = 0, we get indeterminant form.

\rm \:  = \:\displaystyle\lim_{x \to 0}{\bigg(1 + \dfrac{3x + 2}{2 - 5x}  - 1\bigg) }^{\dfrac{1}{x} }

\rm \:  = \:\displaystyle\lim_{x \to 0}{\bigg(1 + \dfrac{3x + 2 - (2 - 5x)}{2 - 5x}  \bigg) }^{\dfrac{1}{x} }

\rm \:  = \:\displaystyle\lim_{x \to 0}{\bigg(1 + \dfrac{3x + 2 - 2 + 5x}{2 - 5x}  \bigg) }^{\dfrac{1}{x} }

\rm \:  = \:\displaystyle\lim_{x \to 0}{\bigg(1 + \dfrac{8x}{2 - 5x}  \bigg) }^{\dfrac{1}{x} }

\rm \:  = \:\displaystyle\lim_{x \to 0}{\bigg(1 + \dfrac{8x}{2 - 5x}  \bigg) }^{\dfrac{2 - 5x}{8x} \times  \dfrac{8x}{x(2 - 5x)} }

We know that

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \:  {\bigg(1 + x\bigg) }^{ \dfrac{1}{x} } = e}}

So, using this result, we get

\rm \:  =  \:  \:{\bigg(e \bigg) }^{\displaystyle\lim_{x \to 0} \: \dfrac{8}{2 - 5x} }

\rm \:  =  \:  \:{\bigg(e \bigg) }^{ \dfrac{8}{2 - 5 \times 0} }

\rm \:  =  \:  \:{\bigg(e \bigg) }^{ \dfrac{8}{2 - 0} }

\rm \:  =  \:  \:{\bigg(e \bigg) }^{ \dfrac{8}{2 } }

\rm \:  =  \:  \: {e}^{4}

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}{\bigg(\dfrac{3x + 2}{2 - 5x} \bigg) }^{\dfrac{1}{x} }  =  {e}^{4}

Since, it is given that f(x) is continuous at x = 0.

\bf\implies \:\quad \sf{ \:\displaystyle\lim_{x \to 0}  \bf\: f(x) = f(0) \quad}

\bf\implies \:k =  {e}^{4}

\bf\implies \:f(0) =  {e}^{4}

Additional Information :-

1. If f and g are two continuous functions at x = a, then

  • f + g is also continuous at x = a

  • f - g is also continuous at x = a

  • f × g is also continuous at x = a

2.

Similar questions