Math, asked by anishamohan413, 2 months ago

plz help me 11th pcbm Math problem plz
Test the continuity of
f(x) =  \frac{y {}^{x} - 2 {}^{ x+ 1}  + 1}{1 -  \cos2x }
for x=/ 0
 =  ( \frac{ log2}{2}) {}^{2}
for x=0 at x=0​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given Appropriate function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x)-\begin{cases} &\sf{\dfrac{ {4}^{x} - {2}^{ x+ 1} + 1}{1 - \cos2x } \: when \: x \:  \ne \: 0} \\ \\  &\sf{\bigg(\dfrac{ log2}{2}\bigg)^{2} \: when \: x \:  =  \: 0} \end{cases}\end{gathered}\end{gathered}

We know that,

A function f(x) is said to be continuous at x = a, iff

\boxed{ \quad \sf{ \:\displaystyle\lim_{x \to a} \: \bf \:  f(x) = f(a) \quad}}

Now,

\rm :\longmapsto\:f(0) = \bigg(\dfrac{ log2}{2}\bigg) ^{2} -  -  - (1)

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \: f(x)

\rm \:  =  \:  \:\displaystyle\lim_{x \to 0}\frac{{4}^{x} -{2}^{ x+ 1} + 1}{1 - \cos2x }

If we substitute directly x = 0, we get indeterminant form.

So, the above can be rewritten as

\rm \:  =  \:  \:\displaystyle\lim_{x \to 0}\frac{{2}^{2x} -2.{2}^{x} + 1}{1 - \cos2x }

We know that

\boxed{ \bf{ \: {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy}}

and

\boxed{ \bf{ \:1 - cos2x = 2 {sin}^{2}x}}

So, using this, we get

\rm \:  =  \:  \:\displaystyle\lim_{x \to 0}\dfrac{ {( {2}^{x}  - 1)}^{2} }{2 {sin}^{2} x}

\rm \:  =  \:  \:\displaystyle\lim_{x \to 0}\dfrac{ {( {2}^{x}  - 1)}( {2}^{x}  - 1)}{2 {sin}x \times sinx}

\rm \:  =  \:  \:\displaystyle\lim_{x \to 0}\dfrac{\dfrac{ {2}^{x}  - 1}{x}  \times \dfrac{ {2}^{x}  - 1}{x} }{2 \times \dfrac{sinx}{x}  \times \dfrac{sinx}{x} }

We know,

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0}  \bf \: \frac{sinx}{x} = 1}}

and

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0}  \bf \: \frac{ {a}^{x}  - 1}{x} = loga}}

Using these results, we get

\rm \:  =  \:  \:\dfrac{ log(2) \times  log(2) }{2 \times 1 \times 1}

\rm \:  =  \:  \:\dfrac{ {(log2)}^{2} }{2}

So, we concluded that

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}f(x)  \:  \ne \: f(0)

  • Hence, f(x) is not continuous at x = 0.

Additional Information :-

1. If f and g are continuous function at x = a, then

  • f + g is also continuous at x = a

  • f - g is also continuous at x = a

  • f × g is also continuous at x = a

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0}  \bf \: \frac{tanx}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0}  \bf \: \frac{tan^{ - 1} x}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0}  \bf \: \frac{sin^{ - 1} x}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \bf \:  \frac{log(1 + x)}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \bf \:  \frac{ {e}^{x}  - 1}{x} = 1}}

Similar questions