Math, asked by lie26, 6 months ago

plz help me......... ​

Attachments:

Answers

Answered by BrainlyEmpire
76

Given:-

\longrightarrow\mathrm{x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}

\longrightarrow\mathrm{y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

To Find:-

Value of  \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

Solution:-

We know that,

\longrightarrow\bf{(a+b)^{2}=a^{2}+2ab+b^{2}}

\longrightarrow\bf{(a-b)^{2}=a^{2}-2ab+b^{2}}

\longrightarrow\bf{(a+b)(a-b)=a^{2}-b^{2}}

Now,

\mathrm{x+y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{x+y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}+(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

\mathrm{x+y=\dfrac{5+3-2\sqrt{5}\sqrt{3}+5+3+2\sqrt{5}\sqrt{3}}{5-3}}

\mathrm{x+y=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}}

\mathrm{x+y=\dfrac{16}{2}}

\mathrm{x+y=8}

Now again,

\mathrm{x-y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{x-y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}-(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

\mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-(5+3+2\sqrt{5}\sqrt{3})}{5-3}}

\mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-5-3-2\sqrt{5}\sqrt{3}}{2}}

\mathrm{x-y=\dfrac{8-2\sqrt{15}-8-2\sqrt{15}}{2}}

\mathrm{x-y=\dfrac{-4\sqrt{15}}{2}}

\mathrm{x-y=-2\sqrt{15}}

Also,

\mathrm{xy=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\times\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{xy=1}

So,

\rightarrow\sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

On adding and subtracting xy in numerator and denominator, we get

\rightarrow\sf{\dfrac{x^{2}+xy+y^{2}+xy-xy}{x^{2}-xy+y^{2}+xy-xy}}

\rightarrow\sf{\dfrac{x^{2}+2xy+y^{2}-xy}{x^{2}-2xy+y^{2}+xy}}

\rightarrow\sf{\dfrac{(x+y)^{2}-xy}{(x-y)^{2}+xy}}

On feeding values in above equation, we get

\rightarrow\sf{\dfrac{(8)^{2}-1}{(-2\sqrt{15})^{2}+1}}

\rightarrow\sf{\dfrac{64-1}{60+1}}

\rightarrow\sf{\dfrac{63}{61}}

Hence, the required value is  \bf{\dfrac{63}{61}}.

Answered by Anonymous
36

Answer:

Given:-

\longrightarrow\mathrm{x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}

\longrightarrow\mathrm{y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

To Find:-

Value of  \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

Solution:-

We know that,

\longrightarrow\bf{(a+b)^{2}=a^{2}+2ab+b^{2}}

\longrightarrow\bf{(a-b)^{2}=a^{2}-2ab+b^{2}}

\longrightarrow\bf{(a+b)(a-b)=a^{2}-b^{2}}

Now,

\mathrm{x+y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{x+y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}+(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

\mathrm{x+y=\dfrac{5+3-2\sqrt{5}\sqrt{3}+5+3+2\sqrt{5}\sqrt{3}}{5-3}}

\mathrm{x+y=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}}

\mathrm{x+y=\dfrac{16}{2}}

\mathrm{x+y=8}

Now again,

\mathrm{x-y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{x-y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}-(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

\mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-(5+3+2\sqrt{5}\sqrt{3})}{5-3}}

\mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-5-3-2\sqrt{5}\sqrt{3}}{2}}

\mathrm{x-y=\dfrac{8-2\sqrt{15}-8-2\sqrt{15}}{2}}

\mathrm{x-y=\dfrac{-4\sqrt{15}}{2}}

\mathrm{x-y=-2\sqrt{15}}

Also,

\mathrm{xy=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\times\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{xy=1}

So,

\rightarrow\sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

On adding and subtracting xy in numerator and denominator, we get

\rightarrow\sf{\dfrac{x^{2}+xy+y^{2}+xy-xy}{x^{2}-xy+y^{2}+xy-xy}}

\rightarrow\sf{\dfrac{x^{2}+2xy+y^{2}-xy}{x^{2}-2xy+y^{2}+xy}}

\rightarrow\sf{\dfrac{(x+y)^{2}-xy}{(x-y)^{2}+xy}}

On feeding values in above equation, we get

\rightarrow\sf{\dfrac{(8)^{2}-1}{(-2\sqrt{15})^{2}+1}}

\rightarrow\sf{\dfrac{64-1}{60+1}}

\rightarrow\sf{\dfrac{63}{61}}

Hence, the required value is  \bf{\dfrac{63}{61}}.

Similar questions