Math, asked by las86, 4 months ago

plz help me....... ​

Attachments:

Answers

Answered by BrainlyEmpire
46

QUESTION :–

Simplify that :–

 \: { \dfrac{1}{ \sqrt{x + 2 \sqrt{x - 1} } }  +  \dfrac{1}{ \sqrt{x - 2 \sqrt{x - 1} } } }

ANSWER :–

Given equation –  \: \\ { \dfrac{1}{ \sqrt{x + 2 \sqrt{x - 1} } }  +  \dfrac{1}{ \sqrt{x - 2 \sqrt{x - 1} } } } \\

• Let's put  { \bold{ \sqrt{x - 1}  = t}}

 \\ \: = { \dfrac{1}{ \sqrt{x + 2t } }  +  \dfrac{1}{ \sqrt{x - 2t} }  } \\

 \\ \: =  \dfrac{ \sqrt{x - 2t} +  \sqrt{x + 2t}  }{( \sqrt{x  +  2t})( \sqrt{x - 2t})  } \\

 \\ \: =  \dfrac{ \sqrt{ (\sqrt{x - 2t} +  \sqrt{x + 2t} )^{2}  }}{ \sqrt{ {x}^{2}   -   {(2t)}^{2} }} \\

 \\ \: =  \dfrac{ \sqrt{ (\sqrt{x - 2t})^{2}  +  (\sqrt{x + 2t} )^{2} + 2 (\sqrt{x - 2t} )( \sqrt{x + 2t} )  }}{ \sqrt{ {x}^{2}   -   {4t}^{2} }} \\

 \\ \: =   \dfrac{ \sqrt{x + 2t + x - 2t + 2 \sqrt{ {(x)}^{2} -  {(2t)}^{2}  } } }{ \sqrt{ {x}^{2}  - 4 {t}^{2} } } \\

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  {4t}^{2}  }) } }{ \sqrt{ {x}^{2}  - 4 {t}^{2} } } \\

• Now put the value of t –

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  {4( \sqrt{x - 1} )}^{2}  }) } }{ \sqrt{ {x}^{2}  - 4 {( \sqrt{x - 1} )}^{2} } } \\

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  {4(x - 1) }}} }{ \sqrt{ {x}^{2}  - 4(x - 1) } } \\

  \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  4x +  4) }} }{ \sqrt{ {x}^{2}  - 4x  + 4} } \\

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x - 2)}^{2}  }} }{ \sqrt{ {(x - 2)}^{2} } } \\

 \\ \: =   \dfrac{ \sqrt{2x   \pm 2 {(x - 2)  }} }{ \pm(x - 2)  } \\

• Now take (+) sign –

 \\ \: =   \dfrac{ \sqrt{2x    +  2 {(x - 2)  }} }{ (x - 2)  } \\

 \\  \: =   \dfrac{ \sqrt{{4x - 4 }} }{ (x - 2)  } \\

  \\ \: =   \dfrac{ 2\sqrt{{x - 1 }} }{ (x - 2)  } \\

=> but denominator will be positive –

 \\ \: =   \dfrac{ 2\sqrt{{x - 1 }} }{ (x - 2)  }  {x > 2} [option (c)]

• Now take (-) sign –

 \\ \: =   \dfrac{ \sqrt{2x  -  2 {(x - 2)  }} }{ - (x - 2)  } \\

 \\ \: =   \dfrac{ \sqrt{4} }{ (2 - x)  } \\

 \\ \: =   \dfrac{2}{ (2 - x)  } \\

=> but –

 \\ \implies \: 0 <  \sqrt{x - 1} < 1 \\

 \\ \implies 1 < x < 2 \\

▪︎ So , that –

 \\ \: =   \dfrac{2}{ (2 - x)  }  {1 < x < 2} [option (b)]

Hence , option (b) & (c) are correct.

Answered by Anonymous
36

QUESTION :–

Simplify that :–

 \: { \dfrac{1}{ \sqrt{x + 2 \sqrt{x - 1} } }  +  \dfrac{1}{ \sqrt{x - 2 \sqrt{x - 1} } } }

ANSWER :–

Given equation –  \: \\ { \dfrac{1}{ \sqrt{x + 2 \sqrt{x - 1} } }  +  \dfrac{1}{ \sqrt{x - 2 \sqrt{x - 1} } } } \\

• Let's put  { \bold{ \sqrt{x - 1}  = t}}

 \\ \: = { \dfrac{1}{ \sqrt{x + 2t } }  +  \dfrac{1}{ \sqrt{x - 2t} }  } \\

 \\ \: =  \dfrac{ \sqrt{x - 2t} +  \sqrt{x + 2t}  }{( \sqrt{x  +  2t})( \sqrt{x - 2t})  } \\

 \\ \: =  \dfrac{ \sqrt{ (\sqrt{x - 2t} +  \sqrt{x + 2t} )^{2}  }}{ \sqrt{ {x}^{2}   -   {(2t)}^{2} }} \\

 \\ \: =  \dfrac{ \sqrt{ (\sqrt{x - 2t})^{2}  +  (\sqrt{x + 2t} )^{2} + 2 (\sqrt{x - 2t} )( \sqrt{x + 2t} )  }}{ \sqrt{ {x}^{2}   -   {4t}^{2} }} \\

 \\ \: =   \dfrac{ \sqrt{x + 2t + x - 2t + 2 \sqrt{ {(x)}^{2} -  {(2t)}^{2}  } } }{ \sqrt{ {x}^{2}  - 4 {t}^{2} } } \\

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  {4t}^{2}  }) } }{ \sqrt{ {x}^{2}  - 4 {t}^{2} } } \\

• Now put the value of t –

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  {4( \sqrt{x - 1} )}^{2}  }) } }{ \sqrt{ {x}^{2}  - 4 {( \sqrt{x - 1} )}^{2} } } \\

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  {4(x - 1) }}} }{ \sqrt{ {x}^{2}  - 4(x - 1) } } \\

  \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x}^{2} -  4x +  4) }} }{ \sqrt{ {x}^{2}  - 4x  + 4} } \\

 \\ \: =   \dfrac{ \sqrt{2x  + 2 \sqrt{ {(x - 2)}^{2}  }} }{ \sqrt{ {(x - 2)}^{2} } } \\

 \\ \: =   \dfrac{ \sqrt{2x   \pm 2 {(x - 2)  }} }{ \pm(x - 2)  } \\

• Now take (+) sign –

 \\ \: =   \dfrac{ \sqrt{2x    +  2 {(x - 2)  }} }{ (x - 2)  } \\

 \\  \: =   \dfrac{ \sqrt{{4x - 4 }} }{ (x - 2)  } \\

  \\ \: =   \dfrac{ 2\sqrt{{x - 1 }} }{ (x - 2)  } \\

=> but denominator will be positive –

 \\ \: =   \dfrac{ 2\sqrt{{x - 1 }} }{ (x - 2)  }  {x > 2} [option (c)]

• Now take (-) sign –

 \\ \: =   \dfrac{ \sqrt{2x  -  2 {(x - 2)  }} }{ - (x - 2)  } \\

 \\ \: =   \dfrac{ \sqrt{4} }{ (2 - x)  } \\

 \\ \: =   \dfrac{2}{ (2 - x)  } \\

=> but –

 \\ \implies \: 0 &lt;  \sqrt{x - 1} &lt; 1 \\

 \\ \implies 1 &lt; x &lt; 2 \\

▪︎ So , that –

 \\ \: =   \dfrac{2}{ (2 - x)  }  {1 < x < 2} [option (b)]

Hence , option (b) & (c) are correct.

Similar questions