Math, asked by ranupamroy55, 10 months ago

plz help me at trigonometry ​

Attachments:

Answers

Answered by XEVILX
3

Hey Pretty Stranger!

Given :

 \dfrac{5 \cos {}^{2} {60}^{ \circ}  + 4 \sec ^{2} {30}^{ \circ}   -  \tan ^{2}  {45}^{ \circ}   }{ \sin ^{2} {30}^{ \circ} +   \cos ^{2}30 ^{ \circ}   }

We know that :

 \bullet \sf \:  \cos{60}^{ \circ}  =  \dfrac{1}{2}

 \bullet \sf \:  \tan{45}^{ \circ}  = 1

 \bullet \sf \:  \sec{30}^{ \circ}  =  \dfrac{2}{ \sqrt{3} }

So,

→ 5 × (½)² + 4 × (2/√3)² - (1)²/ 1

→ 5/4 + 4(4/3) - 1

→ 5/4 + 16/3 - 1

→ 15 + 64 - 12/12

→ 79 - 12/12

→ 67/12

Answered by rumig0720
2

 \frac{5 { \cos(60) }^{2} + 4 { \sec(30) }^{2}  -  { \tan(45) }^{2}  }{ { \sin(30) }^{2} +  { \cos(30) }^{2}  } \\  =   \frac{5 { (\frac{1}{ \sqrt{2} } )}^{2}  + 4 { (\frac{2}{ \sqrt{3} }) }^{2}   -  {1}^{2} }{ { (\frac{1 }{ \sqrt{2}})}^{2} +  { (\frac{ \sqrt{3} }{2} }^{2} ) }   \\  =  \frac{5 \times  \frac{1}{2} + 4 \times  \frac{4}{3} - 1  }{ \frac{1}{2} +  \frac{3}{4}  }  \\  =  \frac{ \frac{5}{2}  +  \frac{16}{3} - 1 }{ \frac{2 + 3}{4} }  \\  =  \frac{ \frac{15 + 32 - 6}{6} }{ \frac{5}{4} }  \\  =  \frac{ \frac{41}{6} }{ \frac{5}{4} }  \\  =  \frac{41}{6}  \times  \frac{4}{5}  \\  =  \frac{164}{30}  \\  =  \frac{82}{15}

Similar questions