Math, asked by Anonymous, 2 months ago

plz help me by solving this question...

I will mark correct answer as brainliest...​

Attachments:

Answers

Answered by Yeetzboi256
3

Add 48 to both sides of the equation.

(x − 10)2 = 48

Take the square root of both sides of the equation to eliminate the exponent on the left side

x − 10 = ±√48

Simplify ±√48.

x−10=±4√3

x=4√3+10,−4√3+10

x=4√3+10,−4√3+10

Rlly hope this helps :)

Answered by Anonymous
8

Answer:

{\boxed{x = 10 + 4\sqrt{3}\;  ,\;  10 - 4\sqrt{3}}}

Step-by-step explanation:

(x - 10)² - 48 = 0

⇒ x² + 100 - 20x - 48 = 0 [Using (a - b)² = a² + b² - 2ab]

⇒ x² - 20x + 52 = 0

\\

Now we need to use Quadratic Equation Formula.

x = \dfrac{-b \pm\sqrt{b^2 - 4ac}}{2a}

\\

Now let's find \sqrt{b^2 - 4ac} firstly.

\sqrt{b^2 - 4ac}

= \sqrt{(-20)^2 - (4*1*52)}

 = \sqrt{400 - 208}

 = \sqrt{192} \\ = 8\sqrt{3}

\\

Now, \alpha = \dfrac{-b + \sqrt{b^2 - 4ac}}{2a}

  = \dfrac{-(-20) + 8\sqrt{3}}{2*1}

 = \dfrac{20 + 8\sqrt{3}}{2}

 = \dfrac{\not2(10 + 4\sqrt{3})}{\not2}

 = 10 + 4\sqrt{3}

\\

Now, \beta  = \dfrac{-b - \sqrt{b^2 - 4ac}}{2a}

  = \dfrac{-(-20) - 8\sqrt{3}}{2*1}

 = \dfrac{20 - 8\sqrt{3}}{2}

= \dfrac{\not2(10 - 4\sqrt{3})}{\not2}

 = 10 - 4\sqrt{3}

\\

\therefore{\boxed{\alpha = 10 + 4\sqrt{3}}}

\therefore{\boxed{\beta = 10 - 4\sqrt{3}}}

\\

\therefore{\boxed{x = 10 + 4\sqrt{3}\;  ,\;  10 - 4\sqrt{3}}}

Similar questions