Math, asked by dhyanshvithakur, 6 months ago

plz help me fast


find the zeros of polynomial X square + 2 X + 1 = 0​

Answers

Answered by 2797neil
3

Answer:

Zeros of polynomial = -1 , -1

Step-by-step explanation:

x^{2} +2x+1=0\\(x+1)^2 = 0\\(x+1)(x+1) = 0\\x = -1,-1

Answered by Anonymous
20

 \bf \huge \color{pink}{Hola!}

QuestioN :

 \mapsto \sf \:  {x }^{2}  + 2x + 1 = 0

_____________________

Process - 1

 \sf \:  {x}^{2}  + 2x + 1 = 0

 \implies \:  \sf {x}^{2}  + x + x + 1 = 0

 \implies \sf \:x(x + 1) + 1(x + 1) = 0

 \implies \sf \:  {(x + 1)}^{2}  = 0

 \implies {  \underline{ \boxed{\sf \: x =  - 1}}}

_____________________

Process - 2

 \sf \:  {x}^{2}  + 2x + 1 = 0

 \implies \sf \:  {(x + 1)}^{2}  = 0 \:  \:  \: [  a²+b²+2ab=(a+b)² ] \\

 \implies {  \underline{ \boxed{\sf \: x =  - 1}}}

_____________________

Process - 3

 \sf \:  {x}^{2}  + 2x + 1 = 0

 \mapsto \boxed{ \sf \: x \:  =  \frac{ - b  ±\sqrt{ {b}^{2} - 4ac } }{2a}}  \:  \:  \:  \:  \:  \:  \:  \:  \bf [  \: Formula \:  ] \\

  \implies \sf \: x \:  =  \frac{ - 2  ±\sqrt{  \cancel{{2}^{2}} -  \cancel{4} } }{2}  \\

 \implies {  \underline{ \boxed{\sf \: x =  - 1}}}

______________

HOPE THIS IS HELPFUL...

Similar questions