Physics, asked by shaastrikavita, 10 months ago

plz help me guys......​

Attachments:

Answers

Answered by shadowsabers03
2

To find:-

\displaystyle\longrightarrow\sf{\int\limits_0^{\frac {\pi}{6}}\sec^2x\ dx}

We know that,

\displaystyle\longrightarrow\sf{\int\sec^2x\ dx=\tan x+c}

Thus,

\displaystyle\longrightarrow\sf{\int\limits_0^{\frac {\pi}{6}}\sec^2x\ dx=\big [\tan x\big]_0^{\frac {\pi}{6}}}

\displaystyle\longrightarrow\sf{\int\limits_0^{\frac {\pi}{6}}\sec^2x\ dx=\tan\left (\dfrac {\pi}{6}\right)-\tan (0)}

\displaystyle\longrightarrow\sf{\int\limits_0^{\frac {\pi}{6}}\sec^2x\ dx=\dfrac {1}{\sqrt3}-0}

\displaystyle\longrightarrow\sf{\underline {\underline {\int\limits_0^{\frac {\pi}{6}}\sec^2x\ dx=\dfrac {1}{\sqrt3}}}}

Hence \displaystyle\sf {\dfrac {1}{\sqrt3}} is the answer.

Similar questions