Math, asked by rajuroya6905, 10 months ago

plz help me I'm struck here​

Attachments:

Answers

Answered by mysticd
2

 LHS =\red{ \frac{cot^{3}\theta sin^{3}\theta}{(cos\theta+sin \theta)^{2} }+ \frac{tan^{3}\theta cos^{3}\theta}{(cos\theta+sin \theta)^{2}}}

 = \frac{\frac{cos^{3}\theta }{sin^{3} \theta } \times sin^{3}\theta}{(cos\theta+sin \theta)^{2} }+ \frac{\frac{sin^{3}\theta }{cos^{3} \theta} \times cos^{3}\theta}{(cos\theta+sin \theta)^{2}}

 = \frac{cos^{3}\theta }{(cos\theta+sin \theta)^{2} }+ \frac{sin^{3}\theta }{(cos\theta+sin \theta)^{2}}

 = \frac{cos^{3}\theta + sin^{3}\theta }{(cos\theta+sin \theta)^{2}}

 = \frac{(cos\theta + sin\theta)(cos^{2}\theta - cos \theta sin \theta + sin^{2}\theta) }{(cos\theta+sin \theta)^{2}}

 = \frac{ 1 - cos \theta sin \theta }{ cos \theta + sin \theta }

  On\: Dividing\: numerator\: and \\denominator\: by \: sin \theta cos \theta, we \:get

 = \frac{ \frac{1}{cos\theta sin \theta } - 1 }{ \frac{1}{sin\theta} + \frac{1}{cos \theta }}

 = \green {\frac{ sec \theta Cosec \theta - 1}{ Cosec \theta + sec \theta } }\\= RHS

 Hence\: proved

•••♪

Answered by mayajakhar79
0

\huge{\purple{\bigstar{ANSWER}}}

Similar questions