Math, asked by sandeepkaurbasati658, 15 days ago

plz help me
Identify the like terms
a) 2x+y+xy3+3y-x+3xy2
b) a2+b2+c2-3a2+2b2-5c2+2a+ b
c) a2b+ab2-1/2a +6b +abc+7ab2-7a2b+9a



b) ​

Answers

Answered by ayushsunilsingh1
1

Answer:

GIVEN

\displaystyle \sf{ \frac{ {a}^{3} + 3 a{b}^{2} }{3 {a}^{2}b + {b}^{3} } = \: \frac{ {x}^{3} + 3 x{y}^{2} }{3 {x}^{2}y + {y}^{3} }}

3a

2

b+b

3

a

3

+3ab

2

=

3x

2

y+y

3

x

3

+3xy

2

TO PROVE

\displaystyle \sf{ \frac{x}{a} = \frac{y}{b} }

a

x

=

b

y

PROOF

\displaystyle \sf{ \frac{ {a}^{3} + 3 a{b}^{2} }{3 {a}^{2}b + {b}^{3} } = \: \frac{ {x}^{3} + 3 x{y}^{2} }{3 {x}^{2}y + {y}^{3} }}

3a

2

b+b

3

a

3

+3ab

2

=

3x

2

y+y

3

x

3

+3xy

2

By the Componendo - Dividendo rule we get

\displaystyle \sf{ \frac{ {a}^{3} + 3 a{b}^{2} + 3 {a}^{2}b + {b}^{3}}{ {a}^{3} + 3 a{b}^{2} - 3 {a}^{2}b - {b}^{3} } = \: \frac{ {x}^{3} + 3 x{y}^{2} + 3 {x}^{2}y + {y}^{3} }{{x}^{3} + 3 x{y}^{2} - 3 {x}^{2}y - {y}^{3} }}

a

3

+3ab

2

−3a

2

b−b

3

a

3

+3ab

2

+3a

2

b+b

3

=

x

3

+3xy

2

−3x

2

y−y

3

x

3

+3xy

2

+3x

2

y+y

3

\implies \: \displaystyle \sf{ \frac{ {(a + b)}^{3} }{ {(a - b)}^{3}} = \frac{ {(x + y)}^{3} }{ {(x - y)}^{3}} \: \: }⟹

(a−b)

3

(a+b)

3

=

(x−y)

3

(x+y)

3

\implies \: \displaystyle \sf{ \frac{ {(a + b)}^{} }{ {(a - b)}^{}} = \frac{ {(x + y)}^{} }{ {(x - y)}^{}} \: \: }⟹

(a−b)

(a+b)

=

(x−y)

(x+y)

Again by Componendo Dividendo Rule

\implies \: \displaystyle \sf{ \frac{ {(a + b + a + b)}^{} }{ {(a + b - a + b)}^{}} = \frac{ {(x + y + x - y)}^{} }{ {(x + y - x + y)}^{}} \: \: }⟹

(a+b−a+b)

(a+b+a+b)

=

(x+y−x+y)

(x+y+x−y)

\implies \: \displaystyle \sf{ \frac{2a}{2b} = \frac{2x}{2y} }⟹

2b

2a

=

2y

2x

\implies \: \displaystyle \sf{ \frac{a}{b} = \frac{x}{y} }⟹

b

a

=

y

x

\implies \: \displaystyle \sf{ \frac{x}{a} = \frac{y}{b} }⟹

a

x

=

b

y

Answered by mannboss83
0

SEE IN ATTACHMENT

PLZ MARK ME BRAINLIEST:-) ಠ‿ಠ

Attachments:
Similar questions