plz help me ....irrevalent answers will be reported answer it correctly.
Attachments:
Answers
Answered by
12
Solution
Given :-
- sec A - tan A = x
To Prove :-
- (1+x²)/(1-x²) = cosec A
Prove
Using Formula
★ sec² A - tan² A = 1
★ tan A = sin A/cos A
★ cos A = 1/sec A
________________
So, First take L.H.S.
➡ (1+x²)/(1-x²)
Keep value of x .
➡ [ 1 + (sec A - tan A)²]/[1 - (sec A - tan A)²]
➡[1+(sec² A + tan² A - 2 tan A sec A)]/[1-(sec² A + tan² A - 2 tan A sec A)]
➡[1+sec² A + tan² A - 2tan A . sec A]/[1-sec² A - tan² A + 2 tan A sec A]
➡[(sec² A - tan² A)+(sec² A + tan² A - 2tan A . sec A)]/[(sec² A - tan² A)-sec² A - tan² A + 2 tan A sec A]
➡2(sec² A - sec A tan A)/2(-tan² A - sec A tan A)
➡sec A(sec A - tan A)/tan A(sec A - tan A)
➡sec A / tan A
➡ (1/cos A )/( sin A/cos A)
➡1/cos A × cos A /sin A
➡1/sin A
➡ cosec A
➡R.H.S.
That's Proved.
_________________
Answered by
5
Given -
To prove -
Prove -
using these formulae -:
☆
☆
☆
LHS-:
keep the value of x in it -:
now putting the value of 1
by opening the second bracket -:
by converting all the values of sec à into tan à -:
by taking sec à and tan à common from then eq.
as we can see sec à - tan à are common in the upper eq.
=
=
putting these values -:
☆ hence proved ☆
Similar questions