Math, asked by Anonymous, 8 months ago

plz help me ....irrevalent answers will be reported answer it correctly.​

Attachments:

Answers

Answered by Anonymous
12

Solution

Given :-

  • sec A - tan A = x

To Prove :-

  • (1+x²)/(1-x²) = cosec A

Prove

Using Formula

sec² A - tan² A = 1

tan A = sin A/cos A

cos A = 1/sec A

________________

So, First take L.H.S.

➡ (1+x²)/(1-x²)

Keep value of x .

➡ [ 1 + (sec A - tan A)²]/[1 - (sec A - tan A)²]

➡[1+(sec² A + tan² A - 2 tan A sec A)]/[1-(sec² A + tan² A - 2 tan A sec A)]

➡[1+sec² A + tan² A - 2tan A . sec A]/[1-sec² A - tan² A + 2 tan A sec A]

➡[(sec² A - tan² A)+(sec² A + tan² A - 2tan A . sec A)]/[(sec² A - tan² A)-sec² A - tan² A + 2 tan A sec A]

➡2(sec² A - sec A tan A)/2(-tan² A - sec A tan A)

➡sec A(sec A - tan A)/tan A(sec A - tan A)

➡sec A / tan A

➡ (1/cos A )/( sin A/cos A)

➡1/cos A × cos A /sin A

➡1/sin A

➡ cosec A

R.H.S.

That's Proved.

_________________

Answered by Anonymous
5

\huge{\bold{\red{\mathtt{\underline{Solution}}}}}

Given -

 \sec \alpha  -  \tan\alpha   = x

To prove -

 \frac{1 +  {x}^{2} }{1 -  {x}^{2} }  =  \csc \alpha

Prove -

using these formulae -:

 { \sec}^{2}  \alpha  -  { \tan }^{2} \alpha  = 1

 \tan \alpha  =  \frac{ \sin\alpha  }{ \cos \alpha }

 \cos \alpha  =  \frac{1}{ \sec \alpha  }

LHS-:

 \frac{1 +  {x}^{2} }{1 -  {x}^{2} }

keep the value of x in it -:

 \frac{1 + (  { \sec\alpha  -  \tan \alpha )}^{2}   }{1  -  (  { \sec\alpha  -  \tan \alpha )}^{2} }

now putting the value of 1

  \frac{({ sec }^{2}  \alpha  -  { \tan}^{2}  \alpha)+ (  { \sec\alpha  -  \tan \alpha )}^{2}   }{({ sec }^{2}  \alpha  -  { \tan}^{2}  \alpha)  -  (  { \sec\alpha  -  \tan \alpha )}^{2} }

by opening the second bracket -:

  \frac{({ sec }^{2}  \alpha  -  { \tan}^{2}  \alpha)+ (  { { sec }^{2}\alpha  +  { \tan}^{2} - 2 sec\alpha \times tan\alpha )}  }{({ sec }^{2}  \alpha  -  { \tan}^{2}  \alpha)  -  (  { {\sec}^2\alpha  + {\tan }^2\alpha - 2 \tan\alpha \times \sec \alpha)} }

by converting all the values of sec à into tan à -:

\frac {2 ({sec}^2\alpha - sec\alpha \times tan\alpha)}{2 (-{tan}^2\alpha + sec\alpha \times tan\alpha)}

by taking sec à and tan à common from then eq.

\frac {sec\alpha (sec\alpha - tan\alpha)}{tan\alpha(-tan\alpha + sec\alpha)}

as we can see sec à - tan à are common in the upper eq.

\frac<u>{</u>sec\alpha}{tan\alpha}

sec \alpha = \frac{1}{cos\alpha}

tan \alpha = \frac{sin\alpha}{cos\alpha}

putting these values -:

\frac{\frac{1}{cos\alpha}}{\frac{sin\alpha}{cos\alpha}}

\frac{1}{sin\alpha}

{csc\alpha}

☆ hence proved ☆

Similar questions