Plz help me
Maths
Topic : - Ratio
Attachments:
Answers
Answered by
31
Given :
(a² + b² + c²)(x² + y² + z²) = (ax + by + cz)²
To prove :
- x : a = y : b = z : c
Proof :
→ (a² + b² + c²)(x² + y² + z²) = (ax + by + cz)²
- Apply identity
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
→ x²(a² + b² + c²) + y²(a² + b² + c²) + z²(a² + b² + c²) = (ax)² + (by)² + (cz)² + 2*ax*by + 2*by*cz + 2*ax*cz
→ x²a² + x²b² + x²c² + y²a² + y²b² + y²c² + z²a² + z²b² + z²c² = a²x² + b²y² + c²z² + 2axby + 2bycz + 2axcz
- Cancel a²x², b²y² & c²z²
→ x²b² + x²c² + y²a² + y²c² + z²a² + z²b² = 2axby + 2bycz + 2axcz
→ x²b² + y²a² - 2axby + y²c² + z²b² - 2bycz + x²c² + a²z² - 2axcz = 0
- Apply identity
- (a - b)² = a² + b² - 2ab
→ (xb - ya)² + (yc - zb)² + (xc - az)² = 0
→ (xb - ya)² = 0, (yc - zb)² = 0, (xc - az)² = 0
→ xb - ya = 0, yc - zb = 0, xc - az = 0
→ xb = ya, yc = zb, xc = az
→ x/a = y/b, y/b = z/c, z/c = x/a
- Each one is equal to each other
→ x/a = y/b = z/c - proved
━━━━━━━━━━━━━━━━━━━━━━━━
Answered by
129
Question:-
- then show that x : a = y : b = z : c.
To Find:-
- Prove it.
Given:-
Solution:-
Here ,
- x = ak ; y = bk ; z = ck
Hence Proved
Similar questions