Math, asked by Pratishtha2003, 1 year ago

plz help me out........guys it will give u 100 points.

Attachments:

Answers

Answered by siddhartharao77
6

Step-by-step explanation:

Given, A + B = 90° (or) B = 90° - A.

LHS:

=\sqrt{\frac{tanAtanB+tanAcotB}{sinAsecB} - \frac{sin^2B}{cos^2A}}

=\sqrt{\frac{tanAtan(90-A)+tanAcot(90-A)}{sinAsec(90-A)}-\frac{sin^2(90-A)}{cos^2A}}

=\sqrt{\frac{tanAcotA+tanAtanA}{sinAcosecA}-\frac{cos^2A}{cos^2A}}

=\sqrt{\frac{tanA*\frac{1}{tanA}+tan^2A}{sinA*\frac{1}{sinA}}-\frac{cos^2A}{cos^2A}}

=\sqrt{\frac{1+tan^2A}{1}-1}

=\sqrt{\frac{1+tan^2A-1}{1}}

=\sqrt{tan^2A}

=\boxed{tanA}

= RHS


Hope it helps!


Shrutika123: Thnx
siddhartharao77: Welcome
Answered by arvindmkt12
3

Answer: sorry bro it will take some time to solve this

But I Will be back to you


Step-by-step explanation:

Given, A + B = 90° (or) B = 90° - A.


LHS:


=\sqrt{\frac{tanAtanB+tanAcotB}{sinAsecB} - \frac{sin^2B}{cos^2A}}


=\sqrt{\frac{tanAtan(90-A)+tanAcot(90-A)}{sinAsec(90-A)}-\frac{sin^2(90-A)}{cos^2A}}


=\sqrt{\frac{tanAcotA+tanAtanA}{sinAcosecA}-\frac{cos^2A}{cos^2A}}


=\sqrt{\frac{tanA*\frac{1}{tanA}+tan^2A}{sinA*\frac{1}{sinA}}-\frac{cos^2A}{cos^2A}}


=\sqrt{\frac{1+tan^2A}{1}-1}


=\sqrt{\frac{1+tan^2A-1}{1}}


=\sqrt{tan^2A}


=\boxed{tanA}


= RHS


I don't know if it is correct or not but

Hope it helps

Similar questions