Math, asked by ASHITA789, 1 month ago

PLZ HELP ME SOLVE THIS QUESTION THANKS​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

Following three points are the vertices of triangle,

  • A (x, - 3)

  • B(4, 6)

  • C(6, - 3)

and

  • Area of triangle ABC = 45 sq. units

We know,

☆ Area of triangle is given by

\rm :\longmapsto\:\ Area =\dfrac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

Here,

\rm :\longmapsto\:Area = 45

 \rm :\longmapsto\:x_1 = x

 \rm :\longmapsto\:x_2 = 4

 \rm :\longmapsto\:x_3 = 6

 \rm :\longmapsto\:y_1 =  - 3

 \rm :\longmapsto\:y_2 =  6

 \rm :\longmapsto\:y_3 =   - 3

Thus, on substituting the values, we get

\rm :\longmapsto\: \pm \: 45 = \dfrac{1}{2} \bigg(x(6 + 3) + 4( - 3 + 3) + 6( - 3 - 6)\bigg)

\rm :\longmapsto\: \pm \: 45 = \dfrac{1}{2} \bigg(9x+ 6( - 9)\bigg)

\rm :\longmapsto\: \pm \: 45 = \dfrac{9}{2} \bigg(x - 6\bigg)

\rm :\longmapsto\: \pm \: 5 = \dfrac{1}{2} \bigg(x - 6\bigg)

\rm :\longmapsto\: \pm \: 10 = x - 6

\rm :\longmapsto\:10 = x - 6 \:  \:  \: or \:  \:  \:  - 10 = x - 6

\rm :\longmapsto\:10 + 6 = x \:  \:  \: or \:  \:  \:  - 10 + 6 = x

\rm :\longmapsto\:16 = x \:  \:  \: or \:  \:  \:  - 4= x

\bf\implies \:x = 16 \:  \: as \: x > 0

Additional Information :-

1. Distance Formula :-

\rm :\longmapsto \:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

2. Section Formula :-

\rm :\longmapsto \:( x, y) = \bigg (\dfrac{mx_2 +  nx_1}{m + n}  , \dfrac{my_2  + ny_1}{m + n}  \bigg)

3. Midpoint Formula :-

\rm :\longmapsto\:( x, y) =  \bigg(\dfrac{x_1+x_2}{2}  , \dfrac{y_1+y_2}{2} \bigg )

Similar questions