Math, asked by palakkapoor936, 4 months ago

plz help me to find this solution​

Attachments:

Answers

Answered by Anonymous
11

 \bf \large \maltese \:  \:  \:  { \underline{\underline{Question : }}}

  • Evaluate the expression
  •  \sf \to  \:  \:  \:  \frac{1 -  { \tan}^{2} 30 \degree }{ 1 +  { \cot}^{2}30 \degree }  \\

 { \large{ \natural }}\:  \:  \: \sf \: Concept  \:  \: required  \:  \: to  \:  \: solve \:  \:  this \:  \:  problem,

  • We need to know the exact value of tan( ratio of high and base ) and cot( ratio of base and hight ) at 30 degree first.
  • Secondly it's definite accordingly with angles.

 \bf \large \maltese \:  \:  \:  { \underline{\underline{Solution : }}}

 \:  \tt \underline{ \underline{ {1}^{st} \:  \: Step : }}

 \sf \: Lets \:   find  \:   out  \: the  \: value  \: of    \tan \:  and  \cot  \: at  \: 30  \degree

Lets assume ∆ABC is a Right triangle having length of each sides a

As it's a Right triangle then angles will be 60° [ property of Right triangle ]

now we drew a right angle on BC from A ;

hence, DC = a/2

hence, tan 60° = AD/DC

Now, We need to find out the length of AD to evaluate the value of tan 60°

We know sin is the ratio of Hight and hypotenuse

hence, sin 60° = Hight/Hypotenuse = AD/a

=> a sin 60° = AD ____( 1 )

From Pythagoras theorem,

base²+hight² = hypotenuse ²

=> (a/2)² + AD² = a²

=> AD² = a² - a²/4

=> AD² = 3a/4

=> AD = √3a/2

substituting value in eqn ( 1 )

a sin 60° = √3a/2

sin 60° = √3/2____( 2 )

again cos 60° = base/hypotenuse

cos 60° = (a/2)/a => 1/2____( 3 )

as we know sin a / cos a = tan a

hence we can say tan 60 = ( √3/2 )/( 1/2 ) => √3

again we know tan a is inverse of cot a

hence cot 60° = 1/√3

 \:  \tt \underline{ \underline{ {2}^{nd} \:  \: Step : }}

 \sf \: Lets \:  \:  substitute  \:  \: the  \:  \: values  \:  \: we  \:  \: have \:  \: got

 \:  \:  \:  \frac{1 -  { \tan}^{2} \theta }{1  +  { \cot}^{2} \theta}  \\

 \implies  \frac{1 -  { \big( \sqrt{3}  \big)}^{2} }{1 +  { \big( \frac{1 }{ \sqrt{3} } \big) }^{2} }  \\

 \implies  \frac{1 - 3}{1 -  \frac{1}{3} }  \\

 \implies  \frac{ -  \cancel{2}}{ \frac{ \cancel{2}}{3} }  \\

 \implies \bf  - 3

Attachments:
Similar questions