Math, asked by gayatrinair51, 9 months ago

plz help....me to solve these​

Attachments:

Answers

Answered by deepbhullar7
11

Answer:

Hlo mate...

Step-by-step explanation:

your answer is referred to the attachment if it helps you please mark my answer as a brain list be safe and stay at your home .....

Follow me.. please

Give thanks to my answers...

Attachments:
Answered by karankirat345
1

 \frac{2}{( \sqrt{2} +  \sqrt{3} ) -  \sqrt{5}  }  \times  \frac{( \sqrt{2}  +  \sqrt{3}) -  \sqrt{5}  }{( \sqrt{2}  +  \sqrt{3}) -  \sqrt{5}  }  \\  \frac{2( \sqrt{2} +  \sqrt{3}  -  \sqrt{5} ) }{( { \sqrt{2}  +  \sqrt{3}) }^{2}  -  { (\sqrt{5} )}^{2} }  \\  \frac{2( \sqrt{2} +  \sqrt{3}  -  \sqrt{5}  )}{2 + 2 \sqrt{6} + 3 - 5 }  \\  \frac{2( \sqrt{2} +  \sqrt{3}  -  \sqrt{5} ) }{2 \sqrt{6} }  \\  \frac{ \sqrt{2} +  \sqrt{3}   -  \sqrt{5} }{ \sqrt{6} }  \\ now \: to \: rationalize \:  \sqrt{6}  \\  \frac{ \sqrt{2} +  \sqrt{3}  -  \sqrt{5}  }{ \sqrt{6} }  \times  \frac{ \sqrt{6} }{ \sqrt{6} }  \\  \frac{ \sqrt{6} ( \sqrt{2} +  \sqrt{3}  -  \sqrt{5} ) }{6}

Hence the denominator is rationalised...

Mark as brainliest!!!

Similar questions