Math, asked by dharmiksenjaliya, 4 months ago

plz help. me to solve this​

Attachments:

Answers

Answered by EnchantedGirl
12

To prove:-

  • \displaystyle \sf \frac{tan\theta }{1-cot\theta } +\frac{cot \theta }{1-tan\theta } = 1+sec\theta .cosec\theta \\

\\

Proof:-

\\

LHS:

\implies \displaystyle \sf \frac{tan\theta }{1-cot\theta } +\frac{cot\theta }{1-tan\theta } \\\\

Putting[✦cotθ = 1/tanθ]

\\ :\implies \displaystyle \sf \frac{tan\theta }{1-\frac{1}{tan\theta} } + \frac{\frac{1}{tan\theta } }{1-tan\theta} \\\\

\displaystyle \implies  \sf \frac{tan\theta }{\dfrac{tan\theta - 1}{tan\theta }} + \frac{1}{tan\theta (1-tan\theta )} \\\\

\displaystyle \implies \sf \frac{tan^2\theta }{tan\theta - 1} +\frac{1}{tan\theta(1-tan\theta )} \\\\

\displaystyle \implies \sf \frac{tan^2\theta }{tan\theta -1} \bold{-} \frac{1}{tan\theta (tan\theta -1)} \\\\

Taking 1/(tanθ-1) common,

\displaystyle \implies \sf \frac{1}{(tan\theta -1)} \bigg[tan^2\theta - \frac{1}{tan\theta } \bigg]\\\\

\displaystyle \implies \sf \frac{1}{(tan\theta -1)} \bigg[ \frac{tan^3\theta -1}{tan\theta } \bigg]\\\\

Using the formula,

a³ - b³ = (a-b)(a²+b²+ab)

\\ \displaystyle \implies \sf \frac{1}{\cancel{(tan\theta -1)}} \bigg[\frac{\cancel{(tan\theta -1)}(tan^2\theta +1+tan\theta )}{tan\theta }\bigg] \\\\

\displaystyle \implies \sf \frac{tan^2\theta +1+tan\theta }{tan\theta } \\\\

\displaystyle \implies \sf \frac{tan^2\theta }{tan\theta } +\frac{1}{tan\theta } +\frac{tan\theta }{tan\theta } \\\\

\displaystyle \implies \sf tan\theta +cot\theta + 1\\\\

Using the formula's,

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

\\ \displaystyle \implies \sf \frac{sin\theta }{cos\theta } + \frac{cos\theta }{sin\theta } +1 \\\\

\displaystyle \implies \sf \frac{sin^2\theta +cos^2\theta }{sin\theta cos\theta }+1 \\\\

As [✦sin²θ + cos²θ = 1]

\displaystyle \implies \sf \frac{1}{sin\theta cos\theta } +1 \\\\

Also,

1/sinθ = cosecθ

1/cosθ = secθ

\\ \displaystyle \implies \sf \bigg( \frac{1}{sin\theta } \times \frac{1}{cos\theta }\bigg) +1\\\\

\displaystyle \implies \sf \underline{\boxed{\bold{1+sec\theta .cosec\theta }}}\\\\

      = RHS

Hence proved!

______________

Answered by ScanTxN
35

\blue{\bold{\underline{\underline{}}}}

Hope It Helps!

Attachments:
Similar questions