Math, asked by nishjain117, 9 months ago

Plz help me with at the earliest.....I will mark the ans as brainliest if get a good ans

Attachments:

Answers

Answered by ButterFliee
28

GIVEN:

  • \sf{\dfrac{1- sin \theta }{cos \theta} + \dfrac{cos \theta }{1- sin \theta} = 2 sec \theta}

TO FIND:

  • Evaluate

SOLUTION:

Take L.H.S.

\rm{\longrightarrow \dfrac{1- sin \theta }{cos \theta} + \dfrac{cos \theta }{1- sin \theta} }

\rm{\longrightarrow \dfrac{(1-sin \theta)^2 + cos^2 \theta}{cos \theta (1- sin \theta)} }

Using Identity

  • (ab)² = 2ab +

\rm{\longrightarrow \dfrac{1 - 2sin \theta + sin^2 \theta + cos^2 \theta }{cos \theta (1- sin \theta)}}

Using Trigonometric Identity

  • sin²θ + cos²θ = 1

\rm{\longrightarrow \dfrac{1+ 1 - 2 sin \theta}{cos \theta (1- sin \theta)}}

\rm{\longrightarrow \dfrac{2 - 2 sin \theta}{cos \theta (1- sin \theta)} }

\rm{\longrightarrow \dfrac{2 \cancel{(1- sin \theta)}}{cos \theta \cancel{(1- sin \theta)}}}

\rm{\longrightarrow \dfrac{2}{cos \theta}}

We know that, 1/cosθ = secθ

\bf{\longrightarrow 2 sec \theta = R.H.S.}

\Large{\underline{\underline{\bf{Hence \: Proved  \text{!}}}}}

__________________

Answered by Anonymous
18

LHS = cos theta / 1-sin theta + 1-sin theta / cos theta

= cos theta * cos theta + 1-sin theta * 1-sin theta / cos theta * 1-sin theta

= cos sq theta + 1+ sin sq theta -2sin theta / cos theta * 1-sin theta

= 2 -2sin theta / cos theta * 1-sin theta

=2(1-sin theta )/ cos theta * 1-sin theta

=2/cos theta

= 2 * 1/cos theta

=2 sec theta

= RHS

Similar questions