Plz help me with this question
Attachments:
Answers
Answered by
2
Sol: Given: A circle touching the side BC of ΔABC at P and AB, AC produced at Q and R respectively. RTP: AP = 1/2 (Perimeter of ΔABC) Proof: Lengths of tangents drawn from an external point to a circle are equal. ⇒ AQ = AR, BQ = BP, CP = CR. Perimeter of ΔABC = AB + BC + CA = AB + (BP + PC) + (AR – CR) = (AB + BQ) + (PC) + (AQ – PC) [AQ = AR, BQ = BP, CP = CR] = AQ + AQ = 2AQ ⇒ AQ = 1/2 (Perimeter of ΔABC) ∴ AQ is the half of the perimeter of ΔABC.
Answered by
1
Here is the Solution..
.
.
.
I Hope This Will Help You ❣️^_^
Attachments:
QwertyPs:
Hey Saloni...
Similar questions