Physics, asked by aim84631, 3 months ago

plz help me
write in notebook ​

Attachments:

Answers

Answered by Anonymous
8

Given Expression,

 \sf y = 2 log_{e}( {x}^{2} )

Differentiating w.r.t x,

 \longrightarrow \sf \:  \dfrac{dy}{dx}  =  \dfrac{d \{2 log_{e}( {x}^{2} )  \} }{dx}  \\  \\  \longrightarrow \sf \:  \dfrac{dy}{dx}  =  2\dfrac{d \{log_{e}( {x}^{2} )  \} }{dx}  \\  \\  \longrightarrow \sf \:  \dfrac{dy}{dx}  =  2 \times  \dfrac{1}{ {x}^{2} }  \times  \dfrac{d( {x}^{2} )}{dx}  \\  \\  \longrightarrow \sf \:  \dfrac{dy}{dx}  =   \dfrac{2}{ {x}^{2} }  \times 2x \\  \\  \longrightarrow  \boxed{ \boxed {\sf \:  \dfrac{dy}{dx}  =  \dfrac{4}{x} }}

Derivative of the above expression is 4/x.

Formula Used :

 \sf \:  \dfrac{d \{ log(x) \} }{dx}   =  \dfrac{1}{x}


aim84631: thank you so much
Similar questions