Math, asked by arvinderkaur3417, 1 year ago

Plz help question 3

Attachments:

Answers

Answered by LovelyG
13

Answer:

\large{\underline{\boxed{\sf x = \dfrac{1}{2} \: \: and \: \: y =- \dfrac{3}{2}}}}

Step-by-step explanation:

Given that ;

 \tt \frac{2xy}{x + y}  =  \frac{3}{2}  \:  \: ....(i) \\  \\ \tt \frac{xy}{2x - y} =   - \frac{3}{10}  \:  \: ....(ii)

On cross-multiplying (i) and (ii),

 \tt \frac{2xy}{x + y}  =  \frac{3}{2}  \\  \\ \implies \tt 3x + 3y = 4xy \:  \sf ...(iii)

 \tt  \frac{xy}{2x - y}  =  -  \frac{3}{10}  \\  \\ \implies \tt  - 6x + 3y = 10xy \:  \sf \:  ....(iv)

On Subtracting eqⁿ (iii) from (iv),

 \tt 3x + 3y - ( - 6x + 3y) = 4xy - 10xy \\  \\ \tt 3x + 3y + 6x - 3y =  - 6xy \\  \\ \tt 9x =  - 6xy \\  \\ \tt y =  \frac{ - 6x}{9x}  \\  \\ \boxed{\therefore \:  \bf y =   - \frac{3}{2}}

Substituting the value of y in (iii),

 \tt 3x + 3y = 4xy \\  \\ \implies \tt 3x + 3 \left( \frac{ - 3}{2} \right) = 4x \left( \frac{ - 3}{2} \right ) \\  \\ \implies \tt 3x -  \frac{9}{2} =  \frac{ - 12x}{2}   \\  \\ \implies \tt  \frac{6x - 9}{2}  =  - 12x

On cancelling the denominator,

 \implies \tt 6x - 9 =  - 12x \\  \\  \implies \tt 6x + 12x = 9 \\  \\  \implies \tt 18x = 9 \\  \\  \implies \tt x =  \frac{9}{18}  \\  \\ \boxed{ \therefore \bf  \: x =  \frac{1}{2} }

Similar questions