Math, asked by techno359, 9 months ago

plz help step by step​

Attachments:

Answers

Answered by spacelover123
3

(i) \sf  (4^{2}-3^{2})\times (\frac{7}{2})^{-2}

Step 1: Give appropriate values for numbers in brackets.

\sf (16-9)\times (\frac{7}{2}  )^{-2}

Step 2: We have to apply this law ⇒ \sf a^{-m}=\frac{1}{a^{m}}

\sf (16-9)\times (\frac{2}{7}  )^{2}

Step 3: Solve brackets.

\sf 7 \times \frac{4}{49}

Step 4: Multiply the numbers.

\sf 7 \times \frac{4}{49}

\sf \frac{28}{49}

Step 5: Simplify the fraction.

\sf \frac{28\div 7 }{49\div 7 }

\sf \frac{4}{7}

\sf \bf \therefore  (4^{2}-3^{2})\times (\frac{7}{2})^{-2} = \frac{4}{7}

(ii) \sf (5^{-1}\times 6^{-1})\div 10^{-1}

Step 1: Apply this law in the brackets ⇒ \sf a^{-m}=\frac{1}{a^{m}}

\sf (\frac{1}{5} \times \frac{1}{6} )\div 10^{-1}

Step 2: Solve the brackets.

\sf \frac{1}{30} \div 10^{-1}

Step 3: Apply this law ⇒ \sf a^{-m}=\frac{1}{a^{m}}

\sf \frac{1}{30}\div \frac{1}{10}

Step 4: Divide the fractions.

\sf \frac{1}{30}\times 10

\sf  \frac{10}{30}

Step 5: Simplify the fractions.

\sf  \frac{10\div 10 }{30\div 10 }

\sf \frac{1}{3}

\sf \bf \therefore   (5^{-1}\times 6^{-1})\div 10^{-1}

Similar questions