Physics, asked by sugarcandy1536, 1 month ago

plz help to do this jee question​

Attachments:

Answers

Answered by 22289
0

Answer:

2 answer one is the answer

Explanation:

please mark me Brainlest

Answered by mathdude500
10

Given Question : -

The value of

\rm  \:  \:  \:  \: \:\displaystyle\int_{1}^2\rm  {e}^{ - x} \: dx \: is \:

 \:  \:  \:  \rm \: (1) \:  \: \dfrac{1}{e}  - \dfrac{1}{ {e}^{2} }

 \:  \:  \:  \rm \: (2) \:  \: \dfrac{1}{e} +  \dfrac{1}{ {e}^{2} }

 \:  \:  \:  \rm \: (3) \:  \: \dfrac{1}{e}

 \:  \:  \:  \rm \: (4) \:  \:  \dfrac{1}{ {e}^{2} }  - \dfrac{1}{e}

\purple{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{1}^2\rm  {e}^{ - x} \: dx

We know,

\red{ \boxed{ \sf{ \:\displaystyle\int\rm {e}^{x} \: dx \:  =  \: {e}^{ x} + c}}}

So, using this identity, we get

\rm \:  =  \: \bigg[\dfrac{ {e}^{ - x} }{ - 1} \bigg]_{1}^2\rm

\rm \:  =  \:  -  \: \bigg[ {e}^{ - x}  \bigg]_{1}^2\rm

\rm \:  =  \:  -  \: \bigg[ {e}^{ - 2} -  {e}^{ - 1}\bigg]

\rm \:  =  \:  -  \: \bigg[\dfrac{1}{ {e}^{2} }  - \dfrac{1}{e} \bigg]

\rm \:  =  \: \dfrac{1}{e}  - \dfrac{1}{ {e}^{2} }

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \:\displaystyle\int_{1}^2\rm  {e}^{ - x} \: dx \:  =  \: \dfrac{1}{e}  \:  -  \: \dfrac{1}{ {e}^{2} }  \: }}}

  • So, option (1) is correct

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions