Math, asked by shubhamrana181945, 11 months ago

plz help to finde this answer<br /> \frac{ \sqrt{5 }  -  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }  - a + b \sqrt{15} <br />


find a and b

Answers

Answered by Anonymous
3

 \sf{\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} }  = a + b \sqrt{15} }

rationalise the denominator

 \sf\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }   = a + b \sqrt{15}

 \sf\frac{{ (\sqrt{5 } - \sqrt{3})}^{2}  }{{( \sqrt{5})}^{2}   -  {(\sqrt{3}) }^{2}}  = a + b \sqrt{15}

 \sf\frac{{ {(\sqrt{5 } )}^{2}  +  (\sqrt{3})}^{2}   - 2( \sqrt{5} )( \sqrt{3} )}{{5}   -  3}  = a + b \sqrt{15}

 \sf\frac{5   +  3 - 2\sqrt{15}}{5   -  3}  = a + b \sqrt{15}

 \sf\frac{8 - 2\sqrt{15}}{2}  = a + b \sqrt{15}

 \sf{ \frac{2(4 +  \sqrt{15} )}{2}  = a + b \sqrt{15} }

 \sf{4 +  \sqrt{15}  = a + b \sqrt{15} }

on comparing both sides

 \sf{a = 4} \\ \sf{b = 1}

Answered by cnureddy423
1

Answer:

Step-by-step explanation:

\sf{\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} }  = a + b \sqrt{15} }

rationalise the denominator

 \sf\frac{ \sqrt{5 } - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }   = a + b \sqrt{15}

\sf\frac{{ (\sqrt{5 } - \sqrt{3})}^{2}  }{{( \sqrt{5})}^{2}   -  {(\sqrt{3}) }^{2}}  = a + b \sqrt{15}

 \sf\frac{{ {(\sqrt{5 } )}^{2}  +  (\sqrt{3})}^{2}   - 2( \sqrt{5} )( \sqrt{3} )}{{5}   -  3}  = a + b \sqrt{15}

[tex] \sf\frac{5 + 3 - 2\sqrt{15}}{5 - 3} = a + b \sqrt{15}

\sf\frac{8 - 2\sqrt{15}}{2} = a + b \sqrt{15}

\sf{ \frac{2(4 + \sqrt{15} )}{2} = a + b \sqrt{15} }

\sf{4 + \sqrt{15} = a + b \sqrt{15} }

on comparing both sides

\sf{a = 4} \\ \sf{b = 1}

Similar questions