Math, asked by M7xMaksud, 3 months ago

plz help to solve this​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

  = \lim_{x \rarr\pi} \frac{ \sqrt{5 +  \cos(x) }  - 2}{(\pi - x)^{2} }  \\

Let x - π = t, then we have,

 =  \lim_{ y\rarr0}  \frac{ \sqrt{5 +  \cos(y + \pi) } - 2 }{ {y}^{2} }  \\

Putting y = x - π,

 = \lim_{ y\rarr0} \frac{ \sqrt{5  -  \cos(y) } - 2 }{ {y}^{2} }  \\

 = \lim_{ y\rarr0} \frac{( \sqrt{5  +  \cos(y) } - 2)( \sqrt{5  -   \cos(y) }  + 2) }{ {y}^{2}( \sqrt{5 -  \cos(y) }   +  2) }  \\

 = \lim_{ y\rarr0} \frac{1 +  \cos(y) }{ {y}^{2}( \sqrt{5  -   \cos(y) }   + 2) }  \\

 = \lim_{ y\rarr0} \frac{1 +  \cos(y) }{ {y}^{2} } .\lim_{ y\rarr0} \frac{1}{( \sqrt{5  -   \cos(y) }   + 2)}  \\

 = \lim_{ y\rarr0} \frac{ -   \sin(y) }{2y} .\frac{1}{ \sqrt{5 - 1}  + 2}  \\

 =  \frac{1}{4} .\lim_{ y\rarr0} \frac{ -  \cos(y) }{2}  \\

 =  \frac{1}{4} . \frac{ - 1}{2}  \\

 =  - \frac{1}{8}  \\

Similar questions