Math, asked by nana45, 2 months ago

Plz help with this question




(2+√3)^3-2[(2+√3)^2]-7(2+√3)+5

Answers

Answered by harshilgamer16
2

Answer:11-14-14+√3+5

-12+√4

Done orally

Step-by-step explanation:

Answered by pjahnabi007
2

 huge \fbox \purple{answer}

3

Step-by-step explanation:

Given question -:

(2 +  \sqrt{3} ) {}^{3}  - 2[(2 +  \sqrt{3} {}^{2}  )]  - 7(2  +  \sqrt{3} ) + 5

Calculate the power

 =  > 15 \sqrt{3 }  + 26 - 2(2 +  \sqrt{3}  {}^{2}  - 7(2 +  \sqrt{3}  + 5

Calculate the power

   =  > 15 \sqrt{3 }  + 26 - 2(4 \sqrt{3}  + 7) - 7(2 +  \sqrt{3} ) + 5

Multiply each term in parentheses by -2

 =  > 15 \sqrt{3}  + 26 - 2(4 \sqrt{3} ) - 2 \times 7 - 7(2 +  \sqrt{3} ) + 5

Get rid of unnecessary parentheses

 =  > 15 \sqrt{3}  + 26 - 2 \times 4 \sqrt{3}  - 2 \times 7 - 7(2 +  \sqrt{3} ) + 5

Simplify the expression

 =  > 15 \sqrt{3}  + 26 - 8 \sqrt{3}  - 2 \times 7 - 7(2 +  \sqrt{3} ) + 5

Multiply -2 and 7

 =  > 15 \sqrt{3}  + 26 - 8 \sqrt{3}  - 14 - 7(2 +  \sqrt{3} ) + 5

Multiply each term in parentheses by -7

 =  > 15 \sqrt{3}  + 26 - 8 \sqrt{3}  - 14 - 7 \times 2 - 7 \sqrt{3}  + 5

Multiply -7 and 2

 =  > 15 \sqrt{3}  + 28 - 8 \sqrt{3}  - 14 - 14 - 7 \sqrt{3}  + 5

Calculate between the similar terms

.

 =  >  0\sqrt{3}  + 26 - 14 - 14 + 5

Calculate the sum or the difference

 =  > 0 \sqrt{3}  + 3

If you multiply a number by 0 , it becomes 0

 =  > 0 + 3

0 Doesn't change when you add or subtract

 =  > 3

hence ,\: your \: answer \:  \: is \:  \: 3

Similar questions