Physics, asked by Rimpa67, 2 months ago

Plz hrlp me plz it’s urgent​

Attachments:

Answers

Answered by Anonymous
19

Here,we are given that:-

  • \sf\theta = 60^{\circ}
  • \sf R = 9\ m
  • \sf x = 6\ m

\\

  • We need to find the value of y for the projectile.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\\

Let's find the value of "y":-

\sf\displaystyle \sf y=x\, tan\, \theta-\frac{gx^2}{2u^2\, cos^2\,\theta}\\\\

\sf:\implies y = x\, tan\, \theta-\frac{gx^2}{2u^2\, cos^2\,\theta}\times\frac{sin\,\theta}{sin\,\theta}\\\\

\sf:\implies y = x\, tan\, \theta-\frac{g}{2u^2\, sin\,\theta\, cos\,\theta}\times\frac{x^2\ sin\,\theta}{cos\,\theta}\\\\

\sf:\implies y = x\, tan\, \theta-\frac{ x^2\, tan\,\theta}{R}\\\\

\sf :\implies \boxed{\sf y=x\, tan\,\theta\left(1-\frac{x}{R}\right)}\\\\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Putting the given values :-

\sf\displaystyle \sf y=x\, tan\,\theta\left(1-\frac{x}{R}\right)\\\\

:\implies \sf y = 6\, tan\, 60^{\circ}\left(1-\frac{6}{9}\right)\\\\

:\implies \sf y = 6\sqrt{3}\left(1-\frac{2}{3}\right)\\\\

 :\implies \sf y=6\sqrt{3}\times \frac{1}{3}\\\\

\implies{\underline{\boxed{\frak{\red{y= 2√3\;m}}}}}\;\bigstar\\\\

\therefore{\underline{\sf{Hence,\; value\; of \; y \; is\;  \bf{ 2√3\;m}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Answered by ItzMissRoyalPriyanka
1

OHere we are given that:

. 0 = 60°

• R = 9m

• x = 6 m

. We need to find the value of y for the projectile.

Let's find the value of "y":

=xtan 0 - gx²/2u² cos² 0

y=xtand - gx²/2u² cos² sin 0 sin 0

y = x tan 0 gx²/2u² sin cos × x² sin0/cos0

y=xtan0

x² tan 0

R

0 (1-0)

y=xtand

Putting the given

❍Putting the given values :-

\begin{gathered}\sf\displaystyle \sf y=x\, tan\,\theta\left(1-\frac{x}{R}\right)\\\\\end{gathered}

y=xtanθ(1−

R

x

)

\begin{gathered}:\implies \sf y = 6\, tan\, 60^{\circ}\left(1-\frac{6}{9}\right)\\\\\end{gathered}

:⟹y=6tan60

(1−

9

6

)

\begin{gathered}:\implies \sf y = 6\sqrt{3}\left(1-\frac{2}{3}\right)\\\\\end{gathered}

:⟹y=6

3

(1−

3

2

)

\begin{gathered} :\implies \sf y=6\sqrt{3}\times \frac{1}{3}\\\\\end{gathered}

:⟹y=6

3

×

3

1

\begin{gathered}\implies{\underline{\boxed{\frak{\red{y= 2√3\;m}}}}}\;\bigstar\\\\\end{gathered}

y=2√3m

\therefore{\underline{\sf{Hence,\; value\; of \; y \; is\; \bf{ 2√3\;m}.}}}∴

Hence,valueofyis2√3m.

Similar questions