Math, asked by soniyahuidrom1, 9 days ago

Plz it's urgent Hurry up​

Attachments:

Answers

Answered by Anonymous
18

Answer:

The volume of cylinder is 17600 cm³.

Base area of cylinder is 1257.14 cm².

\begin{gathered}\end{gathered}

Step-by-step explanation:

Question :

A rectangular paper of with 24 cm is rolled along its width and a cylinder of radius 20 m is formed. Then, the volume and the base area of cylinder.

\begin{gathered}\end{gathered}

Solution :

Here,

Since the rectangle is rolled along its width to make cylinder. So,

  • ✧ Width of rectangle = height of cylinder

Now, here we have given that :

  • ✧ Radius of cylinder = 20 cm
  • Height of cylinder = 14 cm.

Now, we know the radius and height of cylinder are 20 cm and 14 cm. So, finding the volume of cylinder by using formula :

\longrightarrow{\pmb{\sf{Volume_{(Cylinder)}  =  \pi{r}^{2}h}}}

Where :

  • π denotes 22/7
  • r denotes radius
  • h denotes height

Substituting all the given values in the formula to find volume of cylinder :

{\longrightarrow{\sf{Volume_{(Cylinder)}  =  \pi{r}^{2}h}}}

{\longrightarrow{\sf{Volume_{(Cylinder)}  =   \dfrac{22}{7} \times  {(20)}^{2} \times 14}}}

{\longrightarrow{\sf{Volume_{(Cylinder)}  =   \dfrac{22}{7} \times {(20 \times 20)} \times 14}}}

{\longrightarrow{\sf{Volume_{(Cylinder)}  =   \dfrac{22}{7} \times 400 \times 14}}}

{\longrightarrow{\sf{Volume_{(Cylinder)}  =   \dfrac{22}{\cancel{7}}\times 400 \times  \cancel{14}}}}

{\longrightarrow{\sf{Volume_{(Cylinder)}  =  22 \times 400 \times 2}}}

{\longrightarrow{\sf{Volume_{(Cylinder)}  = 44 \times 400 }}}

{\longrightarrow{\sf{\underline{\underline{\red{Volume_{(Cylinder)}  = 17600 \:  {cm}^{3}}}}}}}

Hence, the volume of cylinder is 17600 cm³.

\rule{300}{1.5}

We know the radius of cylinder is 20 cm. Then, Finding the base area of cylinder by using formula :

{\longrightarrow{\pmb{\sf{Base  \: Area_{(Cylinder)} = \pi{r}^{2}}}}}

Where :

  • π denotes 22/7
  • r denotes radius

Substituting all the given values in the formula to find base area of cylinder :

{\longrightarrow{\sf{Base  \: Area_{(Cylinder)} = \pi{r}^{2}}}}

{\longrightarrow{\sf{Base  \: Area_{(Cylinder)} = \dfrac{22}{7}  \times {(20)}^{2}}}}

{\longrightarrow{\sf{Base  \: Area_{(Cylinder)} = \dfrac{22}{7}  \times {(20 \times 20)}}}}

{\longrightarrow{\sf{Base  \: Area_{(Cylinder)} = \dfrac{22}{7}  \times {(400)}}}}

{\longrightarrow{\sf{Base  \: Area_{(Cylinder)} = \dfrac{22}{7}  \times 400}}}

{\longrightarrow{\sf{Base  \: Area_{(Cylinder)} = \dfrac{22 \times 400}{7}}}}

{\longrightarrow{\sf{Base  \: Area_{(Cylinder)} = \dfrac{8800}{7}}}}

{\longrightarrow{\sf{\underline{\underline{\red{Base  \: Area_{(Cylinder)} \approx 1257.14 \:  {cm}^{2}}}}}}}

Hence, the base area of cylinder is 1257.14 cm².

\begin{gathered}\end{gathered}

Learn More :

Here's the given some formulas related to cylinder. For clear understanding please visit to website Brainly.in.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\underline{\rule{220pt}{4pt}}

Answered by talpadadilip417
1

Answer:

Learn More :

Here's the given some formulas related to cylinder. For clear understanding please visit to website Brainly.in.

Step-by-step explanation:

 \color{olive}\boxed{\begin{array}{l}\bigstar\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textsf{1}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf \textsf{2} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf\textsf{3} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\ \sf\textsf{4} \: \:Volume=\pi r^2h\end{array}}

Similar questions