Math, asked by lilymishra19, 3 months ago

plz koi bataado jldi koi or answer matt krna plz ham report kr denge​

Attachments:

Answers

Answered by yashbvbvpn2237
1

Answer:

here you here's the answer

Step-by-step explanation:

Given: ∆ABC is an isosceles ∆.

AB = AC and AD = AB

To Prove:

∠BCD is a right angle.

Proof:

In ΔABC,

AB = AC (Given)

⇒ ∠ACB = ∠ABC (Angles opposite to the equal sides are equal.)

In ΔACD,

AD = AB

⇒ ∠ADC = ∠ACD (Angles opposite to the equal sides are equal.)

Now,

In ΔABC,

∠CAB + ∠ACB + ∠ABC = 180°

⇒ ∠CAB + 2∠ACB = 180°

⇒ ∠CAB = 180° – 2∠ACB — (i)

Similarly in ΔADC,

∠CAD = 180° – 2∠ACD — (ii)

also,

∠CAB + ∠CAD = 180° (BD is a straight line.)

Adding (i) and (ii)

∠CAB + ∠CAD = 180° – 2∠ACB + 180° – 2∠ACD

⇒ 180° = 360° – 2∠ACB – 2∠ACD

⇒ 2∠ACB + 2∠ACD= 360-180

⇒ 2(∠ACB + ∠ACD) = 180°

⇒ ∠BCD = 90°

Hope this will help you...

Answered by Anonymous
1

\huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}}

Hii.. Good Afternoon .. I'm fine :) WBY?

Similar questions