plz plz please please please please plz plz give me ans it's urgent please
Answers
Given:-
- AB of ∆ABC is 2 cm.
- AC of ∆ABC is 3 cm.
- Angle B of ∆ABC is 90°.
To find:-
- Value of sin A
Solution:
We know that,
◆ sinθ =
Sin A =
- BC is not given.
- ∆ABC is right angled triangle. We can use Pythagoras theorem.
Pythagoras theorem:-
(Base)²+(Perpendicular)² = (Hypotenuse)²
Base = BC = ?
Perpendicular = AB = 2 cm
Hypotenuse = AC = 3 cm
Put the values in above formula
⇒(BC)²+(AB)² = (AC)²
⇒(BC)² + (2)² = (3)²
⇒(BC)² = (3)²-(2)²
⇒(BC)² = 9 - 4
⇒(BC)² = 5
⇒BC = √5
BC = √5
Sin A =
Sin A =
Therefore,
◆ Sin A =
______________________
More ratio's:-
◆ cos θ =
◆ tan θ =
◆ cot θ =
◆ sec θ =
◆ cosec θ =
Answer:
Given:-
AB of ∆ABC is 2 cm.
AC of ∆ABC is 3 cm.
Angle B of ∆ABC is 90°.
To find:-
Value of sin A
Solution:
We know that,
◆ sinθ = \frac{Perpendicular}{Hypotenuse}
Hypotenuse
Perpendicular
Sin A = \frac{BC}{AC}
AC
BC
BC is not given.
∆ABC is right angled triangle. We can use Pythagoras theorem.
Pythagoras theorem:-
(Base)²+(Perpendicular)² = (Hypotenuse)²
Base = BC = ?
Perpendicular = AB = 2 cm
Hypotenuse = AC = 3 cm
Put the values in above formula
⇒(BC)²+(AB)² = (AC)²
⇒(BC)² + (2)² = (3)²
⇒(BC)² = (3)²-(2)²
⇒(BC)² = 9 - 4
⇒(BC)² = 5
⇒BC = √5
BC = √5
Sin A = \frac{BC}{AC}
AC
BC
Sin A = \frac{√5}{3}
3
√5
Therefore,
◆ Sin A = \frac{√5}{3}
3
√5
______________________
More ratio's:-
◆ cos θ = \frac{Base}{Hypotenuse}
Hypotenuse
Base
◆ tan θ = \frac{Perpendicular}{Base}
Base
Perpendicular
◆ cot θ = \frac{Base}{Perpendicular}
Perpendicular
Base
◆ sec θ = \frac{Hypotenuse}{Base}
Base
Hypotenuse
◆ cosec θ = \frac{Hypotenuse}{Perpendicular}
Perpendicular
Hypotenuse