Math, asked by atul18381, 7 months ago

plz plz please please please please plz plz give me ans it's urgent please ​

Attachments:

Answers

Answered by MoodyCloud
6

Given:-

  • AB of ∆ABC is 2 cm.
  • AC of ∆ABC is 3 cm.
  • Angle B of ∆ABC is 90°.

To find:-

  • Value of sin A

Solution:

We know that,

◆ sinθ =  \frac{Perpendicular}{Hypotenuse}

Sin A =  \frac{BC}{AC}

  • BC is not given.
  • ∆ABC is right angled triangle. We can use Pythagoras theorem.

Pythagoras theorem:-

(Base)²+(Perpendicular)² = (Hypotenuse)²

Base = BC = ?

Perpendicular = AB = 2 cm

Hypotenuse = AC = 3 cm

Put the values in above formula

⇒(BC)²+(AB)² = (AC)²

⇒(BC)² + (2)² = (3)²

⇒(BC)² = (3)²-(2)²

⇒(BC)² = 9 - 4

⇒(BC)² = 5

⇒BC = √5

BC = 5

Sin A =  \frac{BC}{AC}

Sin A =  \frac{</strong><strong>√</strong><strong>5</strong><strong>}{</strong><strong>3</strong><strong>}

Therefore,

◆ Sin A =  \frac{√5}{3}

______________________

More ratio's:-

◆ cos θ =  \frac{Base}{Hypotenuse}

◆ tan θ =  \frac{Perpendicular}{Base}

◆ cot θ =  \frac{Base}{Perpendicular}

◆ sec θ =  \frac{Hypotenuse}{Base}

◆ cosec θ =  \frac{Hypotenuse}{Perpendicular}

Answered by Pallakavya
1

Answer:

Given:-

AB of ∆ABC is 2 cm.

AC of ∆ABC is 3 cm.

Angle B of ∆ABC is 90°.

To find:-

Value of sin A

Solution:

We know that,

◆ sinθ = \frac{Perpendicular}{Hypotenuse}

Hypotenuse

Perpendicular

Sin A = \frac{BC}{AC}

AC

BC

BC is not given.

∆ABC is right angled triangle. We can use Pythagoras theorem.

Pythagoras theorem:-

(Base)²+(Perpendicular)² = (Hypotenuse)²

Base = BC = ?

Perpendicular = AB = 2 cm

Hypotenuse = AC = 3 cm

Put the values in above formula

⇒(BC)²+(AB)² = (AC)²

⇒(BC)² + (2)² = (3)²

⇒(BC)² = (3)²-(2)²

⇒(BC)² = 9 - 4

⇒(BC)² = 5

⇒BC = √5

BC = √5

Sin A = \frac{BC}{AC}

AC

BC

Sin A = \frac{√5}{3}

3

√5

Therefore,

◆ Sin A = \frac{√5}{3}

3

√5

______________________

More ratio's:-

◆ cos θ = \frac{Base}{Hypotenuse}

Hypotenuse

Base

◆ tan θ = \frac{Perpendicular}{Base}

Base

Perpendicular

◆ cot θ = \frac{Base}{Perpendicular}

Perpendicular

Base

◆ sec θ = \frac{Hypotenuse}{Base}

Base

Hypotenuse

◆ cosec θ = \frac{Hypotenuse}{Perpendicular}

Perpendicular

Hypotenuse

Similar questions