Math, asked by mehtabbrar896, 10 months ago

plz plz plz slv this sum plz.......​

Attachments:

Answers

Answered by Anonymous
11

To prove -

\frac{\sin \theta }{[ \sec \theta + tan \theta - 1 ]}  + \frac{\cos \theta }{[ \cosec \theta + \cot \theta - 1 ] }  = 1 \\

Taking LHS

\frac{\sin \theta }{[\sec \theta + \tan \theta - 1 ]}  + \frac{\cos \theta }{[\cosec \theta + \cot \theta - 1 ]} \\

Converting all values in term of sin and cos

\frac{\sin \theta }{ \frac{1}{\cos \theta } + \frac{\sin \theta}{\cos \theta} -1} + \frac{\cos \theta}{\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta } -1 } \\

\frac{\sin \theta . \cos \theta }{1 + \sin \theta - \cos \theta } + \frac{\sin \theta . \cos \theta }{1 - \sin \theta + \cos \theta } \\

Taking sin theta . cos theta common -

\sin \theta . \cos \theta [ \frac{1}{1 + \sin \theta - \cos \theta } + \frac{1 }{1 + \cos \theta - \sin \theta }] \\

\sin \theta . \cos \theta [ \frac{1 - \sin \theta + \cos \theta + 1+ \sin \theta - \cos \theta }{ [1 + \sin \theta - \cos \theta ] [ 1 + \cos \theta - \sin \theta ]  } ]\\

We know that [a+b][a-b] = a^{2} - b^{2} \\

\frac{2 \sin \theta. \cos \theta    }{{1}^{2} - {\sin \theta - \cos \theta }^{2}   }\\

\frac{2 \sin \theta . \cos \theta }{1 - [ \sin^{2} \theta + \cos^{2} \theta - 2\cos \theta . \sin \theta ] }\\

\frac{2 \sin \theta \cos \theta }{1 - 1 + 2 \sin \theta \cos \theta }\\

\frac{2 \sin \theta \cos \theta }{ 2 \sin \theta \cos \theta   } = 1 \\

Hence proved

Answered by BrainlyPopularman
6

Question :

  \\ \:  \: { \bold{prove \:  \: that  :  \left[ \dfrac{ \sin( \theta) }{ \sec( \theta) +  \tan( \theta)  - 1 }  \right] + \left[ \dfrac{ \cos( \theta) }{ cosec( \theta) +  \cot( \theta)  - 1 }  \right] = 1}} \\

ANSWER :

• Let's take L.H.S.

  \\ \:  \: { \bold{ =  \left[ \dfrac{ \sin( \theta) }{ \sec( \theta) +  \tan( \theta)  - 1 }  \right] + \left[ \dfrac{ \cos( \theta) }{ cosec( \theta) +  \cot( \theta)  - 1 }  \right] }} \\

• We know that –

   \\ \longrightarrow{ \bold { \sec( \theta)  =  \dfrac{1}{ \cos( \theta)  }   \: \: and \:  \: cosec( \theta) =  \dfrac{1}{ \sin( \theta) }}}

   \\ \longrightarrow{ \bold { \tan( \theta)  =  \dfrac{ \sin( \theta) }{ \cos( \theta)  }   \: \: and \:  \:  \cot( \theta) =  \dfrac{ \cos( \theta) }{ \sin( \theta) }}}

• So that –

  \\ \:  \: { \bold{ =  \left[ \dfrac{ \sin( \theta) }{  \dfrac{1}{ \cos( \theta) }  +   \dfrac{ \sin( \theta) }{ \cos( \theta)}   - 1 }  \right] + \left[ \dfrac{ \cos( \theta) }{  \dfrac{1}{ \sin( \theta) } +   \dfrac{ \cos( \theta) }{ \sin( \theta) }   - 1 }  \right] }} \\

  \\ \:  \: { \bold{ =  \left[ \dfrac{ \sin( \theta) \times  \cos( \theta)  }{ 1 +  \sin( \theta) -  \cos( \theta)   }  \right] + \left[ \dfrac{ \cos( \theta)  \times  \sin( \theta) }{  1 +  \cos( \theta)  -  \sin( \theta) }  \right] }} \\

  \\ \:  \: { \bold{ = (\sin( \theta) \times  \cos( \theta))\left[ \dfrac{ 1  }{ 1 +  \sin( \theta) -  \cos( \theta)   }   +  \dfrac{ 1 }{  1 +  \cos( \theta)  -  \sin( \theta) }  \right] }} \\

  \\ \:  \: { \bold{ = (\sin( \theta) \times  \cos( \theta))\left[ \dfrac{  1 +  \sin( \theta) -  \cos( \theta)  +  1 +  \cos( \theta)  -  \sin( \theta) }{( 1 +  \sin( \theta) -  \cos( \theta)  ).( 1 +  \cos( \theta)  -  \sin( \theta) ) }     \right] }} \\

  \\ \:  \: { \bold{ = (\sin( \theta) \times  \cos( \theta))\left[ \dfrac{  2 }{( 1 +  \sin( \theta) -  \cos( \theta)  ).[ 1  - ( \sin(  \theta )   - \cos( \theta)   )] }     \right] }} \\

  \\ \:  \: { \bold{ = (\sin( \theta) \times  \cos( \theta))\left[ \dfrac{  2 }{[ (1) ^{2}  - ( \sin(  \theta )   - \cos( \theta)   )^{2} ] }     \right]  \:  \:  \:  \:  \:[  \: \because \:  \:(a - b)(a + b) =  {a}^{2}  -  {b}^{2}  ] }} \\

  \\ \:  \: { \bold{ = ( \sin( \theta) \times  \cos( \theta)) \left[ \dfrac{  2 }{ 1 -  { \sin}^{2}( \theta) -  { \cos }^{2}  ( \theta) + 2 \sin( \theta)  \cos( \theta) } \right]   }} \\

  \\ \:  \: { \bold{ = ( \sin( \theta) \times  \cos( \theta)) \left[ \dfrac{  2 }{ 1   - ( { \sin}^{2}( \theta)  +   { \cos }^{2}  ( \theta) )+ 2 \sin( \theta)  \cos( \theta) } \right]   }} \\

  \\ \:  \: { \bold{ = ( \sin( \theta) \times  \cos( \theta)) \left[ \dfrac{  2 }{ 1   - 1+ 2 \sin( \theta)  \cos( \theta) } \right]   }} \\

  \\ \:  \: { \bold{ = ( \sin( \theta) \times  \cos( \theta)) \left[ \dfrac{   \cancel2 }{  \cancel2 \sin( \theta)  \cos( \theta) } \right]   }} \\

  \\ \:  \: { \bold{ =  \left[  \cancel\dfrac{  \sin( \theta)  \cos( \theta) }{   \sin( \theta)  \cos( \theta) } \right]   }} \\

  \\ \:  \: { \bold{ =  1  }} \\

  \\ \:  \: { \bold{ =  R.H.S. \:  \: (Hence \:  \: proved)  }} \\

 \\ \rule{220}{2} \\

Similar questions