Math, asked by mehtabbrar896, 11 months ago

plz plz plz solve this sum ........​

Attachments:

Answers

Answered by tahseen619
2

To Prove:

\sqrt{ \dfrac{1  +  \cos A }{1 -  \cos A} } +  \sqrt{ \dfrac{ 1 -  \cos A }{1 +  \cos A } }  = 2  \cosec A

Method of Solution:

1. Don't Rationalize take L.C.M

2. Use Trigonometry Rules

3. Simplify and get Answer

Simple ?

Solution:

L.H.S

\sqrt{ \dfrac{1  +  \cos A }{1 -  \cos A} } +  \sqrt{ \dfrac{ 1 -  \cos A}{1 +  \cos A} }  \\  \\  \frac{ \sqrt{(1 +  \cos A)(1 + \cos A)}  +  \sqrt{(1 -  \cos A)(1 -  \cos A)}}{ \sqrt{(1 +  \cos A)(1 -  \cos A} )}   \\  \\  =  \frac{1 +  \cos A+ 1 -   \cos A}{ \sqrt{1  -  { \cos}^{2} A } } \\  \\  =  \frac{1 + 1}{ \sqrt{ \sin {}^{2}}}  \\  \\   = \frac{2}{ \sin A}  \\  \\  = 2.\cosec A \\  \\  \therefore \text{L.H.S = R.H.S} \: \:[\textsf{Proved}]

Some important trigonometry Rules:

sinø . cosecø = 1

cosø . secø = 1

tanø . cotø = 1

sin²ø + cos²ø = 1

cosec²ø - cot² = 1

sec²ø - tan²ø = 1

Similar questions