plz plz..... tell fast this answer 3,4 sums
Attachments:
Answers
Answered by
2
question no.(3) , Given Angles are
A = 2y + 4° , B = 6x - 4°
C = 4y - 4° , angle D = 7x + 2°
sum of opposite angles of given cyclic
quadrilateral will be equal = 180°
Angle A + angle C = 180°
2y + 4° + 4y - 4° = 180°
6y = 180° => y = 30°
Angle A = 2y + 4° = 2(30) + 4 = 64°
amgleC = 4y - 4° = 4(30) - 4° = 116°
AngleB + AngleD = 180°
6x - 4° + 7x + 2° = 180°
13x = 182 => x = 14
thus
AngleB = 6x - 4 = 6(14) - 4
AngleB= 80°
and AngleD = 7x + 2° = 7(14) + 2= 100°
angle D = 100°
Answer:all the angles of cyclic quadrilateral ABCD are A = 64°,B = 80°,
C = 116°, D = 100°
question.no (4):
-------------------------
given AB is parallel to CD
AB = 10cm , CD = 24cm
in quadrilateral ABCD ,
radius of circle = 13cm = OC = OA
CD = 24cm,then CE = 24 / 2 = 12cm=ED
in triangle COE,
(CO)^2 = (CE)^2 + (OE)^2
(13)^2 = (12)^2 + (OE)^2
OE^2 = 169 - 144 = 25
=> OE = √25 = 5cm
so thus , OE = 5cm
now in triangleAOF
since, AB = 10cm ,AF = 10/ 2 = 5cm = BF
(AO)^2 = (OF)^2 + (AF)^2
(13)^2 = (OF)^2 + (5)^2
(OF)^2 = 169 - 25 = 144
OF = √144 = 12cm
therefore,
the shortest distance between AB and CD
EF = OE + OF
EF = 5cm + 12cm = 17cm
Answer: shortest distance = 17cm
A = 2y + 4° , B = 6x - 4°
C = 4y - 4° , angle D = 7x + 2°
sum of opposite angles of given cyclic
quadrilateral will be equal = 180°
Angle A + angle C = 180°
2y + 4° + 4y - 4° = 180°
6y = 180° => y = 30°
Angle A = 2y + 4° = 2(30) + 4 = 64°
amgleC = 4y - 4° = 4(30) - 4° = 116°
AngleB + AngleD = 180°
6x - 4° + 7x + 2° = 180°
13x = 182 => x = 14
thus
AngleB = 6x - 4 = 6(14) - 4
AngleB= 80°
and AngleD = 7x + 2° = 7(14) + 2= 100°
angle D = 100°
Answer:all the angles of cyclic quadrilateral ABCD are A = 64°,B = 80°,
C = 116°, D = 100°
question.no (4):
-------------------------
given AB is parallel to CD
AB = 10cm , CD = 24cm
in quadrilateral ABCD ,
radius of circle = 13cm = OC = OA
CD = 24cm,then CE = 24 / 2 = 12cm=ED
in triangle COE,
(CO)^2 = (CE)^2 + (OE)^2
(13)^2 = (12)^2 + (OE)^2
OE^2 = 169 - 144 = 25
=> OE = √25 = 5cm
so thus , OE = 5cm
now in triangleAOF
since, AB = 10cm ,AF = 10/ 2 = 5cm = BF
(AO)^2 = (OF)^2 + (AF)^2
(13)^2 = (OF)^2 + (5)^2
(OF)^2 = 169 - 25 = 144
OF = √144 = 12cm
therefore,
the shortest distance between AB and CD
EF = OE + OF
EF = 5cm + 12cm = 17cm
Answer: shortest distance = 17cm
Attachments:
jasmine765:
Tq so....much
Similar questions