Math, asked by anjal46, 1 year ago

plz prove it.plz plz plz.​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

 {x}^{ {a}^{2}  {b}^{ - 1}  {c}^{ - 1} } .{x}^{ {b}^{2}  {a}^{ - 1}  {c}^{ - 1} }. {x}^{ {c}^{2}  {a}^{ - 1}  {b}^{ - 1} }  =  {x}^{2}  \\ LHS = {x}^{ {a}^{2}  {b}^{ - 1}  {c}^{ - 1} } .{x}^{ {b}^{2}  {a}^{ - 1}  {c}^{ - 1} }. {x}^{ {c}^{2}  {a}^{ - 1}  {b}^{ - 1} }  \\  =  {x}^{ \frac{ {a}^{2} }{bc} } .{x}^{ \frac{ {b}^{2} }{ac} } .{x}^{ \frac{ {c}^{2} }{ab} }  \\ =  {x}^{ \frac{ {a \times a}^{2} }{a \times bc} } .{x}^{ \frac{ {b \times b}^{2} }{b \times ac} } .{x}^{ \frac{ {c \times c}^{2} }{c \times ab} }  \\  = {x}^{ \frac{ {a}^{3} }{abc} } .{x}^{ \frac{ {b}^{3} }{abc} } .{x}^{ \frac{ {c}^{3} }{abc} }  \\  =  {x}^{\frac{ {a}^{3} }{abc}  +\frac{{b}^{3} }{abc} + \frac{{c}^{3} }{abc} }   \\  =  {x}^{  \frac{{a}^{3}  +  {b}^{3}  +  {c}^{3} }{abc} }  \\  =  {x}^{ \frac{2({a}^{3}  +  {b}^{3}  +  {c}^{3}) }{2abc} }   \\ ( \because \:  given\:  {a}^{3}  +  {b}^{3}  +  {c}^{3} = 1 \:  \\ and \: 2abc = 1)\\  = {x}^{ \frac{2(1) }{1} } \\  = {x}^{ \frac{2}{1} } \\  =  {x}^{2}

= RHS

HENCE PROVED

Similar questions