plz prove LHS= RHS PLZZ
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
Formulas used :-
(1). sin(A) cos(B) - cos(A) sin(B) = sin(A - B)
(2). 2 sin(A) cos(A) = sin(2A)
Proof :-
\frac{1}{sin(10)} - \frac{ \sqrt{3} }{cos(10)} \\ \\ 4 [ \frac{ \frac{1}{2} cos(10) - \frac{ \sqrt{3} }{2} sin(10) }{2 sin(10) cos(10)} ] \\ \\ 4[ \frac{sin(30) cos(10) - cos(30) sin(10)}{2 sin(10) cos(10)} ] \\ \\ 4[ \frac{sin(20)}{sin(20)} ] \\ \\ 4
hence LHS=RHS
Hope it helps.......
mohitt48uuu:
plzzzzz bhai plzz
Similar questions