Math, asked by akifsiddique778, 10 months ago

plz prove the question. ​

Attachments:

Answers

Answered by BrainlyConqueror0901
2

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \red{\underline \bold{To \: Prove:}} \\  \tt: \implies \frac{1 + cos \:  \theta}{1 - cos \:  \theta}  = ( {cosec \:  \theta + cot \:  \theta)}^{2}  \\  \\

• According to given question :

\tt: \implies \frac{1 + cos \:  \theta}{1 - cos \:  \theta}  = ( {cosec \:  \theta + cot \:  \theta)}^{2} \\  \\  \bold{Solving \: L.H.S} \\  \tt: \implies \frac{1 + cos \:  \theta}{1 - cos \:  \theta} \\  \\  \tt \circ \:Multiplying \:    \: \frac{1 + cos \:  \theta}{1  +  cos \:  \theta} \\ \\  \tt: \implies \frac{1 + cos \:  \theta}{1 - cos \:  \theta} \times \frac{1 + cos \:  \theta}{1 +  cos \:  \theta} \\  \\ \tt: \implies \frac{(1 + cos \:  \theta)^{2} }{ {1}^{2} - cos^{2} \:  \theta} \\  \\ \tt: \implies \frac{(1 + cos \:  \theta)^{2} }{ {sin}^{2} \:  \theta } \\  \\ \tt: \implies (\frac{1 + cos \:  \theta}{sin \:  \theta})^{2}  \\  \\ \tt: \implies (\frac{1}{sin \:  \theta}  +  \frac{cos \:  \theta}{sin \: \theta} )^{2}  \\  \\  \green{\tt: \implies (cosec \:  \theta + cot \: \theta)^{2}}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \green{L.H.S  = R.H.S} \\  \\    \:  \:  \:  \:  \:  \:  \:  \: \red{\huge{ \bold{Proved}}}

Answered by Saby123
0

 \tt{\huge{\orange {Hello!!! }}} B.Q.

 \tt{\purple{\leadsto{ \dfrac{ 1 + cos { \phi } } { 1 - cos { \phi } } }}}

Rationalizing,

 \tt{\orange{\leadsto{ \dfrac{ 1 + cos { \phi } } { 1 - cos { \phi } }  \times<em> </em>\dfrac{ 1 +  cos { \phi } } { 1 + cos { \phi } }  }}}

 \tt{\blue{\leadsto{ \dfrac { { 1 + cos { \phi } }^2 }{1 - { cos { \phi }}}^2 } }}}

 \tt{\green{\leadsto{ \dfrac { { 1 + cos { \phi } }^2 }{ {sin { \phi }}^2 } }}}

 \tt{\red{\leadsto{ \dfrac{ 1 + cos {\phi} { sin {\phi} }^2 }}}

 \tt{\orange{\leadsto{ { Cosec { \phi } + Cot { \phi} } ^2 }}}

HENCE PROVED

Similar questions