Math, asked by bangtangirl1, 8 months ago

Plz prove this.....​

Attachments:

Answers

Answered by am0303997
1

Here is your answer........

Attachments:
Answered by Anonymous
11

Given:

 \\  \\  \frac{1 - \cos\theta}{1 + \cos\theta}  =  {(\cot\theta - \csc\theta)}^{2}  \\  \\  \\

To Prove:

\\\\

LHS = RHS

\\\\\\

Answer:

 \\  \\

Firstly, we will solve LHS.

\\\\

LHS:

 \dfrac{1 - \cos\theta}{1 + \cos\theta}  \times  \dfrac{1 - \cos\theta}{ 1- \cos\theta} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\  \\  \dfrac{(1 - \cos\theta )^{2} }{1 -  {\cos}^{2}\theta }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\  \\  \dfrac{ {(1 - \cos\theta)}^{2} }{ {\sin}^{2}\theta }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\\\ \dfrac{1+{\cos}^2\theta-2\cos\theta}{{\sin}^2\theta}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\\\ \dfrac{1}{{\sin}^2\theta}+\dfrac{{\sin}^2\theta}{{\cos}^2\theta}-\dfrac{2\cos\theta}{\sin\theta\times\sin\theta} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\\\ {\csc}^2\theta+{\cot}^2\theta-2cot\theta\csc \theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\\\\sf We\:know\:that\:(a^2+b^2-2ab)=(a-b)^2\:\:\:\:\:\:\:\:\:\:\:\\\\(\cot\theta-\csc\theta)^2 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\\  \\  \\

LHS = RHS

\\\\

Hence Proved.

\\\\\\

Other Trigonometric Identities:

\\\\\sf1)\:{\sin}^{2}\theta+{\cos}^{2}\theta=1\\\sf2) \: {\sec}^{2} \theta - {\tan}^{2} \theta = 1\\\sf3) \: {\csc}^{2} \theta - {\cot}^{2} \theta = 1\\\\

Trigonometric Ratios:

\\\\\tt1) \: \sin\theta = \frac{1}{ \csc \theta} \\\tt 2) \: \cos \: \theta \: \: = \: \frac{1}{\sec\theta} \\\tt 3) \: \tan \: \theta \: = \: \frac{1}{\cot \: \theta} \\\tt 4) \: \cot \: \theta \: = \: \frac{1}{\tan \: \theta} \\\tt 5) \: \sec \: \theta \: = \: \frac{1}{\cos \: \theta} \\\tt 6) \:\csc\:\theta= \frac{1}{\sin \: \theta}

Similar questions