Math, asked by vishal25505, 9 months ago

PLZ PROVE THIS QUESTION

I WILL DEFINITELY MARK AS BRAINLIEST....PLZ ......


DON'T GIVE NON-USEFUL ANS......PLZ​

Attachments:

Answers

Answered by BrainlyTornado
2

QUESTION:

Prove that

(1 +  \frac{1}{ { \tan}^{2} \theta })(1 +  \frac{1}{ { \cot}^{2} \theta }  ) =  \frac{ 1 }{ { \sin}^{2} \theta - {\sin}^{4} \theta }

TO PROVE:

(1 +  \frac{1}{ { \tan}^{2} \theta })(1 +  \frac{1}{ { \cot}^{2} \theta }  ) =  \frac{ 1 }{ { \sin}^{2} \theta - {\sin}^{4} \theta }

FORMULA:

1 / tan² A = cos² A / sin² A

1 / cot² A = sin² A / cos² A

1 - sin² A = cos² A

sin² A + cos² A = 1

PROOF:

(1 +  \frac{1}{ { \tan}^{2} \theta })(1 +  \frac{1}{ { \cot}^{2} \theta }  )   =  \frac{ 1 }{ { \sin}^{2} \theta - {\sin}^{4} \theta }

Take L.H.S as

( \frac{ { \sin}^{2}  \theta +  {\cos}^{2}  \theta}{ { \sin}^{2} } \theta )( \frac{ { \cos}^{2}  \theta +  {\sin}^{2}  \theta}{ { \cos}^{2} } \theta ) \\  \\  \frac{1}{  { \sin}^{2}  \theta}  \times \frac{1}{  { \cos}^{2}  \theta} \\  \\    \frac{1}{{ \sin}^{2}  \theta  \: { \cos}^{2} \theta }

Take R.H.S as

\frac{ 1 }{ { \sin}^{2} \theta - {\sin}^{4} \theta } \\  \\  \frac{1}{ { \sin}^{2} \theta(1 -  { \sin}^{2}  \theta) }  \\  \\ \frac{1}{{ \sin}^{2}  \theta \:  { \cos}^{2} \theta }

L. H. S = R. H. S

HENCE PROVED

Answered by ajayboroakb
2

Answer:

Mark me as brilliant please

Similar questions