Math, asked by swateeee, 10 months ago

plz provide detailed answer of this question , if possible plz don't text the answer send pic​

Attachments:

Answers

Answered by rishu6845
0

Answer:

\huge{\boxed{\pink{x = 2}}}

Step-by-step explanation:

\bold{\underline{\blue{Given}}}\longrightarrow \\  log_{3}( {3}^{x} - 6 )  = x - 1

\bold{\underline{\green{Concept \: used}}}\longrightarrow \\if \\  log_{m}(x)  = n \:  =  > x =  {m}^{n}

 {a}^{m - n}  =  {a}^{m}  \:  \:  {a}^{ - n}

\bold{\underline{\red{Solution}}}\longrightarrow \\  log_{3}( {3}^{x} - 6 )  = x - 1 \\  =  >  {3}^{x}  - 6 =  {3}^{x - 1}  \\  =  >  {3}^{x}  -  {3}^{x  - 1}  - 6 = 0 \\  =  >  {3}^{x}  -  {3}^{x}   \:  \: {3}^{ - 1}  = 6 \\  =  >  {3}^{x} (1 -  \dfrac{1}{3} ) = 6 \\  =  >  {3}^{x} ( \dfrac{3 - 1}{3} ) = 6 \\  =  >  {3}^{x}  ( \dfrac{2}{3} ) = 6 \\  =  >  {3}^{x}  =  \dfrac{6 \times 3}{2}  \\  =  >  {3}^{x}  =  \dfrac{18}{2}  \\  =  >  {3}^{x}  = 9 \\  =  >  {3}^{x}  =  { {3}^{2} } \\  comparing \: exponent \: we \: get \\  =  > x = 2

Similar questions