Math, asked by legend003, 9 months ago

plz reply fast.........................​

Attachments:

Answers

Answered by AdorableMe
121

Solution →

_______________________

\sf{\sqrt{\dfrac{1+sinA}{1-sinA} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)(1+sinA)}{(1-sinA)(1+sinA)} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{(1)^2-(sinA)^2} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{1-sin^2A} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{cos^2A} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{(cosA)^2} } }\\\\\\\sf{=\sqrt{\bigg(\dfrac{1+sinA}{cosA} \bigg)^2 } }\\\\\\\sf{=\dfrac{1+sinA}{cosA} } \\\\\\\sf{=\dfrac{1}{cosA}+\dfrac{sinA}{cosA}  }\\\\\\\sf{=secA+tanA}

Therefore, the answer is (B) sec A + tan A.

_______________________

Identities used :--

1 - sin²A = cos²A

1/cos A = sec A

sin A/cos A = tan A


shadowsabers03: Great!
Answered by Anonymous
25

Solution →

_______________________

\sf{\sqrt{\dfrac{1+sinA}{1-sinA} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)(1+sinA)}{(1-sinA)(1+sinA)} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{(1)^2-(sinA)^2} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{1-sin^2A} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{cos^2A} } }\\\\\\\sf{=\sqrt{\dfrac{(1+sinA)^2}{(cosA)^2} } }\\\\\\\sf{=\sqrt{\bigg(\dfrac{1+sinA}{cosA} \bigg)^2 } }\\\\\\\sf{=\dfrac{1+sinA}{cosA} } \\\\\\\sf{=\dfrac{1}{cosA}+\dfrac{sinA}{cosA}  }\\\\\\\sf{=secA+tanA}

Therefore, the answer is (B) sec A + tan A.

_______________________

Identities used :--

1 - sin²A = cos²A

1/cos A = sec A

sin A/cos A = tan A

Similar questions